
ABSTRACT

Prior to the Grenvillian continent-
continent collision at about 1.0 Ga, the
southern margin of Laurentia was a
long-lived convergent margin that
extended from Greenland to southern
California. The truncation of these
1.8–1.0 Ga orogenic belts in southwest-
ern and northeastern Laurentia suggests
that they once extended farther. We
propose that Australia contains the con-
tinuation of these belts to the southwest
and that Baltica was the continuation to
the northeast. The combined orogenic
system was comparable in length to the
modern American Cordilleran or
Alpine-Himalayan systems. This plate
reconstruction of the Proterozoic super-
continent Rodinia called AUSWUS
(Australia–Southwest U.S.) differs from
the well-known SWEAT (Southwest
U.S.–East Antarctic) reconstruction in
that Australia, rather than northern
Canada, is adjacent to the southwestern
United States. The AUSWUS reconstruc-
tion is supported by a distinctive
“fingerprint” of geologic similarities
and tectonic histories between Australia
and the southwestern United States
from 1.8 to 0.8 Ga, and by a better
agreement between 1.45 and 1.0 Ga
paleomagnetic poles for Australia and
Laurentia. 

INTRODUCTION

Many recent papers have concluded
that a supercontinent called Rodinia
existed in the Neoproterozoic between 1.0
and 0.8 Ga. There is speculation that the
breakup of Rodinia may have been related
to dramatic changes in Earth systems such
as diversification of life, multiple low-
latitude glaciations, fluctuating ocean

chemistry, and long-lived mantle convec-
tion patterns (Dalziel, 1997; Hoffman et
al., 1998; Evans, 1998). However, the dura-
tion and configuration, and even the exis-
tence (Piper and Zhang, 1999), of this late
Proterozoic supercontinent remain uncer-
tain. Detailed reconstructions are hindered
by absence of a sea-floor record, lack of
sufficient geochronologic information to
show synchroneity of supercontinent
assembly and breakup, lack of high-
quality apparent polar wander paths
(APW) for Precambrian rocks of many

continents, and later modifications to
Precambrian plate margins during the
Phanerozoic. Thus, the implications of
possible pre-Pangean supercontinents for
the evolution of Earth systems in general
are difficult to evaluate.

One approach to supercontinent
reconstructions is to try to match rifted
margins of a given age. Reconstructions of
the Mesozoic supercontinent of Pangea
account for the shape and length of rift

Figure 1. AUSWUS reconstruction for 1.7 to 0.8 Ga, modified from Brookfield (1993). The Tasman line
forms the eastern edge of Proterozoic Australia (Myers et al., 1996); the 87Sr/86Sr = 0.706 line marks the
west edge of Proterozoic Laurentia. Continents were rotated to this configuration about an Euler pole
located at 51.46°N 106.70°E, rotation angle 114.33°. Both continents appear in equal-area projection in
North American coordinates. The position of Australia in the SWEAT reconstruction is shown for compar-
ison (from Moores, 1991). Crustal age provinces inferred from Nd data. Massive sulfide deposits of Bro-
ken Hill (BH) are to similar deposits in Jerome (J) in central Arizona and Mount Isa (MI) is across from the
Carlin area of Nevada.
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margins and also satisfy sea-floor magnetic
data from Mesozoic–Cenozoic ocean
basins. Earlier Rodinia reconstructions
(Dalziel, 1997) have tried to match late
Precambrian rift margins that developed
during the breakup of Rodinia. Laurentia
was nearly circumscribed by late Precam-
brian rift margins and thus could have
had a central position within Rodinia. Sed-
imentary subsidence curves suggest that
rifting took place in the latest Precambrian
on many continental margins (Bond et al.,
1984). However, uncertainties regarding
timing of rifting, evidence for multiple rift
events, and the probable presence of con-
tinental fragments (e.g., South China; Li
et al., 1995) complicate the “rift-budget”
approach for Proterozoic supercontinents. 

Another reconstruction tool is the
use of piercing points (unique points that
were adjacent before rifting) between con-
tinents. For Pangea, it has been possible to
match orogenic belts, fossil assemblages,
and glaciogenic sequences. For Rodinia,
the most widely used piercing points are
segments of the 1.0 Ga (Grenville-age)
orogenic belts that record continent-
continent collisions during assembly of
Rodinia. However, the “Grenville-age”
belts themselves remain poorly under-
stood. Most have older (Paleoproterozoic
and Mesoproterozoic) and/or younger
(Pan-African) histories, such that the pro-
posed continuity of these orogens during
assembly of Rodinia and their use as pierc-
ing points (Unrug, 1997) may be substan-
tially oversimplified. 
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The approach in this paper is to com-
pare the tectonic evolution of key cratons
within Rodinia. For Australia and Lauren-
tia, we evaluate the SWEAT reconstruction
of Rodinia and propose an alternate recon-
struction, AUSWUS (Fig. 1). For Laurentia
and Baltica, we support the reconstruction
of Park (1995) and Åhäll and Gower
(1997). This approach is not global in
scope, but it has global implications. Our
proposed long-lived juxtaposition of Aus-
tralia, Laurentia, and Baltica provides a set
of testable implications for the tectonic
evolution of these cratons and an alter-
nate hypothesis for Proterozoic supercon-
tinent reconstructions.

Studies of Proterozoic rocks of the
southwestern United States over the past
few decades have led to a clearer under-
standing of its tectonic history. This his-
tory involves: (1) derivation of the crust
from mantle sources from 1.8 to 1.6 Ga;
(2) magmatic and metamorphic events
from 1.5 to 1.3 Ga; (3) continent-conti-
nent collision and failed intracratonic rift-
ing from 1.3 to 1.0; and (4) rifting and
margin subsidence from 0.8 to 0.55 Ga,
forming the early Paleozoic rift margins of
Laurentia. The southeastern edge of Lau-
rentia grew southward from 1.8 to 1.0 Ga,
evolving as a long-lived, but episodic, con-
vergent margin that produced a set of
northeast-striking orogenic belts. The 800-
m.y. orogenic history of these belts can be
used as a “fingerprint” to identify the
cratons that were adjacent during the
Proterozoic. 

SWEAT MODEL

The most influential continental re-
construction for the late Precambrian has
been the SWEAT hypothesis (Moores,
1991; Hoffman, 1991; and Dalziel, 1991).
In this model, the western U.S. is matched
to Antarctica, western Canada to Australia,
and the truncated 1.0 Ga Grenville orogen
in Texas to East Antarctica. 

Recent geologic data and a reassess-
ment of the paleomagnetic database raise
doubts about the main piercing points
used for the SWEAT reconstruction.
Moores (1991) and Dalziel (1991) sug-
gested that the truncated Grenville front
of west Texas could be matched to the
Weddell Sea area of Antarctica. However,
Gose et al. (1997) suggested that this part
of Antarctica was within west Gondwana
(Kalahari) at 1.1 Ga, not east Gondwana,
negating this piercing point (Dalziel, 1997,
p. 33). All other proposed piercing points
are also in question. For example, litho-
logic and isotopic similarities between the
Shackleton Range of Antarctica and the
Yavapai province of Arizona are weakened
by isotopic data that show Archean crustal
components in the Shackleton Range
(Helper et al., 1996).

Proposed connections between Aus-
tralia and northern Canada also are in
doubt. The striking lithostratigraphic simi-
larity between Neoproterozoic sequences
of the Adelaidian rocks of Australia and
the Mackenzie-Windermere sections of
Canada (Young, 1992) do not provide
piercing points for reconstructions,
because these sequences can also be corre-
lated southward along the Cordilleran
margin (Link et al., 1993), and perhaps
globally (Hoffman et al., 1998). Similarly,
the ca. 780 Ma mafic dikes of northwest
Canada, Montana, and Wyoming, postu-
lated to be part of a plume-generated radi-
ating swarm (Park et al., 1995), are
younger than the 827 Ma Australian
Gairdner mafic dikes and are probably not
part of a single event (Wingate et al.,
1999).

AUSWUS MODEL: AN 
ALTERNATIVE RECONSTRUCTION

Proposed modifications of the SWEAT
reconstruction have placed Australia far-
ther south relative to North America. Ross
et al. (1992) suggested that 1580– 1600 Ma
detrital zircons in the Belt Supergroup
were derived from the Gawler Range vol-
canic rocks of South Australia and indicate
that Australia was well south of the origi-
nal SWEAT position (Fig. 1). Similarly,
Borg and DePaolo (1994) speculated that
the Ross et al. (1992) reconstruction might
explain Nd isotopic provinces in Antarc-
tica, if terranes had been translated south-
ward as allochthonous strike-slip blocks.
However, neither these provenance nor
Nd province studies provide unique pierc-
ing points. 

Brookfield (1993) placed Australia
adjacent to the western United States by
matching inferred rift-transform segments
of Proterozoic rift margins. Using a modi-
fied version of the Brookfield (1993)
reconstruction (Fig. 1), we propose that
Australia was adjacent to the southwestern
U.S. during much of the Proterozoic. To
test this hypothesis, we have rotated

proto-Australia into North American coor-
dinates using an Euler pole at 51.46°N,
106.70°E (angle of rotation of 114°). We
evaluate this reconstruction here for four
Proterozoic time periods. 

Crust Formation and 
Paleoproterozoic Assembly

The core of Laurentia consists of a
mosaic of Archean cratons stitched by
1.9–1.8 Ga orogenic belts (Fig. 1). This is
similar to western and northern Australia
(Myers et al., 1996) and Baltica (Gor-
batschev and Bogdanova, 1993). Nd
model ages, often interpreted as the time
of derivation of the crust from the mantle,
are 2.0–2.3 Ga in northeastern Australia
(Ross et al., 1992; Blewett et al., 1998),
northwestern Canada, and the Mojave
province (Bennett and DePaolo, 1987) and
do not readily distinguish between the
SWEAT and AUSWUS models. However,
south of its Archean core, Laurentia is
characterized by juvenile Proterozoic
orogens, derived from the mantle at
2.0–1.8 Ga (Yavapai province) and 1.8–1.6
Ga (Mazatzal province; Karlstrom and
Bowring, 1993). These belts have potential
counterparts (based on Nd model ages) in
the Arunta and Musgrave blocks (Zhao
and McCulloch, 1995) and the Transscan-
dinavian igneous belt and Gothian ter-
ranes of Baltica (Gorbatschev and Bog-
danova, 1993). The sequence of orogens
gets progressively younger southward and,
collectively, could provide a set of piercing
points.

Paleoproterozoic rocks in the south-
western U.S. and Australia are similar in
composition and tectonic setting. Juvenile
arc assemblages are present in both areas
(Yavapai in Laurentia and Arunta in Aus-
tralia), as are quartz arenite–rhyolite cover
sequences (Mazatzal in Laurentia and
Reynolds-Musgrave in Australia; Dirks and
Wilson, 1990). Also, major ore-deposit dis-
tricts broadly match up (Fig. 1). Protero-
zoic rocks in both regions record progres-
sive heterogeneous, middle-crustal
shortening from 1.8 to 1.6 Ga, compatible
with progressive thickening and stabiliza-
tion of juvenile arc terranes to form new
continental lithosphere (Karlstrom and
Williams, 1998; Collins and Shaw, 1995).
The 1780–1730 Ma Strangeways orogeny
in the Arunta Inlier could be broadly cor-
relative with the 1780–1690 Ma accretion
of juvenile arcs in the southwestern
United States. Likewise, the 1680–1660
Arglke event in the Arunta Inlier could be
correlative with the 1650 Ma Mazatzal
orogeny.

Intracratonic A-type Magmatism
and Related Tectonism

A prominent feature of the Paleopro-
terozoic orogens in Laurentia-Baltica is a
suite of bimodal plutonic and volcanic
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rocks that were emplaced episodically from 1.6 to 1.2
Ga (Fig. 2A). Although their origin is enigmatic, they
form distinctive intracratonic units that allow correla-
tion across the Atlantic Ocean—e.g., at 1.46 Ga (Åhäll
and Connelly, 1998). Although traditionally termed
A-type for “anorogenic,” there is increasing evidence for
an orogenic linkage of Mesoproterozoic rocks in eastern
Laurentia (Rivers, 1997), Baltica, and the southwestern
United States (Nyman et al., 1994). These intracratonic
events could have echoed subduction-related and tran-
scurrent tectonism near the plate margin, but much of
the plate margin record has been obscured by Grenville
tectonism and mid-continent Paleozoic cover
sequences.

In Australia, A-type granites of the Gawler craton
are older (1.6 Ga) than, but similar in composition and
character to, those of southwestern Laurentia, and they
could be a continuation of an A-type granite belt. This
observation seems incompatible with interpretations
that the Gawler craton was “assembled” with northern
Australia across the Albany Fraser belt at 1.1 Ga (Myers
et al., 1996), but other models suggest Paleoproterozoic
connections between Gawler and northern Australia
(Teasdale, 1997) and invoke progressive, largely intracra-
tonic deformation from 1.5 to 1.0 Ga in the Albany-
Fraser belt.

Sedimentary basins of 1.5–1.3 Ga are also present in
each continent. The Belt basin of western Laurentia
accumulated tens of kilometers of sediment between
1.47 and 1.35 Ga (Aleinikoff et al., 1997). The Roper
Group, Birrindudu Basin, and Bangemall Basin of simi-
lar age form a zone parallel to the inferred transpressive
orogen in Australia (Myers et al., 1996) and could be a
sedimentary response to the 1.4 Ga orogenic event.
Inferred shortening directions in Laurentia (west-north-
west; Nyman et al., 1994) and Australia (southeast;
Myers et al., 1996) are similar in the AUSWUS recon-
struction, consistent with intracratonic dextral trans-
pressive deformation in both continents 

Grenville Tectonism
Tectonism that took place between 1.3 and 1.0 Ga

from Labrador to Mexico (Fig. 2B) is broadly referred to
as the Grenville orogeny (e.g., Davidson, 1995). This
orogeny culminated (and ended) a nearly 1-b.y. history
of tectonism along a convergent margin in southern
Laurentia. It included early magmatism, metamor-
phism, and arc accretion to Laurentia (~1.3–1.17 Ga),
intraplate magmatism (Eastern Grenville province;
1.16–1.13 Ga), and finally collisions with masses out-
board to the southeast (possibly Amazonia and Kala-
hari). Grenvillian plutonism and metamorphism are
generally imprinted on older (~1.7–1.45 Ga) crust corre-
sponding to the Yavapai and Mazatzal provinces of the
southwestern United States (Davidson, 1995). Juvenile
Grenvillian crust was added as well (e.g., Rivers, 1997).

Figure 2. AUSWUS reconstruction for three time slices using the
reconstruction of Figure 1. A: Orogenic belts and A-type granites
and anorthosites, 1.6–1.3 Ga; G-R = granite rhyolite provinces;
histogram shows wide variation in ages of A-type magmatism along
the orogen in Laurentia (Hoffman, 1989). B: Grenville orogenic belts
(yellow) are shown with foliation trends; temporally-coincident
northeast intracratonic extension is recorded by mafic dikes (red)
and normal faults. Oaxaca is restored along the Mojave-Sonora
megashear. C: Extension and sedimentation prior to and synchron-
ous with supercontinent fragmentation, 900–600 Ma. The Central-
ian superbasin includes the Officer basin (O), Amadeus basin (A),
Georgina basin (G), and Adelaidian basin.
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Within Australia, orogenic events in
the Albany-Fraser and Musgrave belts
(Fig. 2B) correspond in style and age to the
~1.3–1.0 Grenville orogeny of Laurentia
(Clarke et al., 1995). These belts are almost
exclusively underlain by older crust (Ross
et al., 1992), generally in the range 1.9–1.6
Ga (Yavapai, Mazatzal). Both the Albany-
Fraser and Musgrave belts show evidence
of ~1.3 Ga plutonism consistent with arc-
related settings, orogeny, and regional
high-grade metamorphism between ~1.3
and 1.2 Ga. This, in turn, was followed
(1.18–1.14 Ga) by “enriched” (intraplate)
granitic magmatism that extends north-
ward into the Arunta block, where alkaline
intrusions also occur. Post–1.15 Ga events
are well developed only in the Musgrave
belt where mafic magmatism (e.g., Giles
complex) was accompanied by bimodal
volcanism and dike swarms at ~1.08 Ga.
Subsequently, the region was overprinted
by granulite facies metamorphism at
~1.06 Ga.

In our proposed reconstruction, there
is a large gap between Grenville belts in
Laurentia and Australia. The Oaxaca ter-
rane of Mexico (Fig. 2B) could have occu-
pied this gap prior to Phanerozoic dis-
placement on the Mojave-Sonora
megashear (Anderson and Silver, 1979).
The location and facing direction of the
Paleozoic miogeocline (west of Oaxaca
basement) is compatible with an original
position farther to the northwest (Ruiz et

al., 1988), where it could have been part of
a continuous rift margin that rimmed
North America (Stewart et al., 1984). This
restoration implies a continuous Grenville
orogen, consistent with cessation of con-
vergent tectonism in both continents after
1.1 Ga. 

Northwest-directed contraction in
Laurentia was accompanied by northeast-
directed intraplate extension resulting in
emplacement of mafic dike swarms, sedi-
mentation in failed rifts, and formation or
reactivation of northwest-trending exten-
sional faults. Intracratonic deformation in
Australia at this time was similar in style.
Northwest-trending extensional faults
were active along the Torrens Hinge zone
between 1.3 and 1.0 Ga (Myers et al.,
1996). Mafic dikes, similar in age to the
Arizona 1.1 Ga diabase dikes are repre-
sented by the Stuart and Kulgera dikes of
central Australia (Camacho et al., 1991).

Rift History: Breakup 
of Rodinia 800–550 Ma

Conflicting lines of evidence suggest
fragmentation of Rodinia at either ca.
800–700 Ma or 600–550 Ma. The earlier
time of initial continental separation is
supported by geologic evidence for the
development of rift basins with immature
clastic sediments and abundant mafic
magmatism on both continents (Fig. 2C;
Centralian Superbasin; Walter and Veev-
ers, 1997; Windermere Supergroup and

equivalents; Ross, 1991). New paleomag-
netic data from the Mundine Well dikes of
Australia (Wingate and Giddings, 1999)
also suggest that rifting between the west-
ern United States and Australia began
before 755 Ma.

PALEOMAGNETIC CONSTRAINTS

Paleomagnetic data provide another
way to test the competing Proterozoic
plate reconstructions. However, the scarce
Proterozoic data set with precise ages and
demonstrably primary magnetizations
does not unequivocally validate either the
SWEAT or the AUSWUS reconstruction. 

Paleoproterozoic (2.5–1.6 Ga) data are
sparse for North America. Nevertheless,
using a reconstruction intermediate
between SWEAT and AUSWUS (Ross et al.,
1992), Idnurm and Giddings (1995) noted
a broad agreement between the Australian
and North American APW paths over the
entire interval 1.7–0.7 Ga. This conclusion
must be viewed with caution because of
the overall lack of well-dated primary pale-
omagnetic poles between 1.7 and 1.5 Ga
and 0.9 and 0.7 Ga, especially for
Laurentia. 

A comparison of Mesoproterozoic
poles from Australia and North America
qualitatively favors the AUSWUS model.
With some uncertainties, the APW path

Figure 3. Orthogonal global projections centered on 30°N, 180°E showing comparison of the paleomagnetic poles from Australia with those from North
America for the AUSWUS and SWEAT reconstructions. In each projection, Australia and the Australian paleomagnetic poles are rotated into present-day North
American coordinates using Euler poles discussed in Table A (see footnote 1). The thick pink lines show the overall track of the ca. 1.45 to 1.1 Ga apparent
polar wander path for North America. Solid circles and thin lines denote Paleomagnetic poles for North America and their 95% confidence limits; red squares
and red heavy lines denote Australian poles and 95% confidence limits. Blue lettering gives age limits for segments of the North American path; black lettering
gives Australian poles and ages. Pole locations for the 1.25 to 1.08 Ma part of the North American apparent polar wander path are tabulated in Harlan et al.
(1994); sources for the ca. 1450 Ma poles are from Harlan and Geissman (1998). The 780 Ma North American poles are from Park et al. (1995), as slightly
modified by Harlan et al. (1997). The 723 Ma North American pole is from the Global Paleomagnetic Online Database. Sources and rotated coordinates for the
Australian poles are in Table A (see footnote 1).

Refining Rodinia continued on p. 6



6 GSA TODAY, October 1999

for North America for the intervals
1450–1400 Ma and 1110–1090 Ma is well
defined. Most Australian poles for this
period (Fig. 3; Table A1), although of lower
overall quality than their North American
counterparts, match the geometry of the
North American APW path reasonably
well in the AUSWUS reconstruction (Fig.
3). In contrast, the fit of the 1.4–1.1 Ga
Australian poles in the SWEAT configura-
tion is less compelling; only one Aus-
tralian pole (IAR, ca. 1.16 Ga; Fig. 3) is
consistent with the North American APW
path. Older paleomagnetic poles for Aus-
tralia (poles GA-1.47 Ga and GRV-1.53 Ga)
are in reasonable agreement in either con-
figuration, but there are no high-quality
North American data older than about
1.45 Ga with which these can be com-
pared.

Neoproterozoic (ca. 800 to 700 Ma)
paleomagnetic results from Laurentia and
Australia are less informative and do not
distinguish between the models. The
SWEAT reconstruction arguably shows bet-
ter consistency of the Australian Yilgarn B
pole with available Neoproterozoic poles
from North America (780 and 730 Ma; Fig.
3). However, the Yilgarn B pole is poorly
determined and questionable in age. A
new high-quality paleomagnetic pole for
the 755 Ma Mundine Well dike swarm of
western Australia (Wingate and Giddings,
1999) is discordant with the Laurentian
Neoproterozoic poles in either the SWEAT
or AUSWUS reconstructions (Fig. 3). These
data suggest that a 50°-wide ocean existed
between the two continents at 755 Ma.

CONCLUSIONS

We view the southern margin of Lau-
rentia as a long-lived (1.8–1.0 Ga)
Cordilleran-type convergent margin
involving several orogenic events or tec-
tonic pulses. This interpretation links a
sequence of southward-younging belts
along the evolving margin and leads to
looking for their continuations outside
present-day Laurentia. The approach of
using the integrated tectonic evolution of
an orogenic system for Precambrian plate
reconstructions is a powerful test of the
supercontinent concept. We note similar
1.8–0.8 Ga rocks and tectonic histories in
Australia, southern Laurentia, and Baltica.
In evaluating these three key segments of
the global supercontinent puzzle, we argue
that the AUSWUS model provides a better
explanation for the geologic and paleo-
magnetic data than does the SWEAT
reconstruction. In view of the uncertainty

regarding the configuration, timing, and
existence of the Rodinian supercontinent,
there is a continuing need to test alternate
Proterozoic plate reconstructions. 
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