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ABSTRACT

Acid is a likely consequence of
many of the catastrophic events postu-
lated for the Cretaceous-Tertiary bound-
ary: nitric acid from atmospheric shock
by bolide and from burning of trees,
sulfuric acid from volcanic aerosols and
from impact vaporization of evaporites,
hydrochloric acid from volcanic aero-
sols, and carbonic acid from carbon
dioxide of volcanoes and fires. The
amount of acid is here estimated from
base cation leaching of boundary beds
and paleosols in eastern Montana.
The thin boundary claystone consumed
so much more acid than the overlying
impact layer and associated paleosols
that strong acids are indicated. Vigorous
early neutralization of hot acid by sili-
cate ejecta may explain the distinctive
kaolinitic composition, and the micro-
spherulitic and vuggy texture of the
boundary bed, in which impact evi-
dence such as shocked quartz has
been destroyed by profound chemical
leaching. This early buffering of impact-
generated acid was fortunate for life in
terranes with high acid-buffering capac-
ity such as the calcareous and smectitic
floodplains of Montana, which were
not acidified to less than pH 4, thus
sparing small mammals, amphibians,
and fish, but affecting plants, non-
marine molluscs, and dinosaurs. 

INTRODUCTION

Catastrophic impact of a large bolide
at the Cretaceous-Tertiary (K-T) boundary
is now established from evidence of irid-
ium anomalies (Alvarez et al., 1980; Orth
et al., 1990), shocked quartz (Izett, 1990),
dramatic changes in fossil plants (Wolfe
and Upchurch, 1987; Nichols et al., 1990;
Johnson and Hickey, 1990), and a large
impact crater in Yucatán (Hildebrand et
al., 1991; Sharpton et al., 1993; Kring,
1995). Also occurring at this time were
flood-basalt eruptions of the Deccan Traps
in India (Duncan and Pyle, 1988; Cour-
tillot et al., 1990) and widespread wildfires
(Wolbach et al., 1988; Tinus and Roddy,
1990). Acid is a likely consequence of all

these events: nitric acid from atmospheric
shock by the bolide and from burning of
trees (Zahnle, 1990), sulfuric acid from
volcanic aerosols and impact vaporization
of evaporites (Hildebrand et al., 1991; Sig-
urdsson et al., 1992; Brett, 1992; Sharpton
et al., 1993), hydrochloric acid from vol-
canic aerosols (Caldeira and Rampino,
1990), and carbonic acid from carbon
dioxide of volcanoes and fires (Wolbach
et al., 1988; Tinus and Roddy, 1990). All
this acid should have left a record in pale-
osols or boundary beds. This study has
been a search for direct evidence of acid
leaching and an exploration of the role
of acid in the still-controversial topic of
selective extinctions at the K-T boundary
(Williams, 1994; Ward, 1995).

PALEOSOLS AND K-T BOUNDARY
BEDS IN MONTANA

Paleosols in the Bug Creek and
Brownie Butte areas of eastern Montana

(Retallack et al., 1987; Retallack, 1994) are
a remarkably complete fossil record of K-T
boundary events (Smit et al., 1987; Rigby
and Rigby, 1990; Swisher et al., 1993).
Only a weak iridium anomaly and no dis-
tinctive boundary beds have been found
in Bug Creek, but the K-T boundary can
be located there by means of unusually
abundant fern spores and fossil plant
extinctions. The “zone of death” in Bug
Creek is the carbonaceous surface of a
moderately developed paleosol into which
the thin ejecta layers were presumably
mixed by the action of later roots and
burrows (Fig. 1). At Brownie Butte, the K-T
meteoritic ejecta include an impact bed,
which is 1 cm thick, gray, smectitic, and
layered, with shocked quartz and an irid-
ium anomaly (Figs. 2 and 3). It directly
overlies the boundary bed, which is 2 cm
thick, pink to white, kaolinitic, micro-

Acid Trauma at the Cretaceous-Tertiary Boundary
in Eastern Montana
Gregory J. Retallack, Department of Geological Sciences, University of Oregon, Eugene, OR 97403-1272

Figure 1. The K-T boundary (arrow) in the sequence of paleosols in Bug Creek (NW1⁄4NW1⁄4SE1⁄4 , sec.
17, T. 22 N., R. 43 E.), McCone County, Montana. The iridium anomaly is weak here because of biotur-
bation into a moderately developed paleosol beneath the dark gray band exposed in the trench exca-
vated low in the bluffs to the left.
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spherulitic, and vuggy. These two distinc-
tive thin beds have been discovered at 30
sites from Alberta and Saskatchewan south
to New Mexico at the radiometrically and
palynologically determined K-T boundary
(Izett, 1990). The boundary bed at
Brownie Butte has been interpreted as a
paleosol (Fastovsky et al., 1989; Izett,
1990), but is now regarded as an early-set-
tling fraction of altered ejecta from bolide
impact (Alvarez et al., 1995). By either
interpretation, its distinctive kaolinitic
composition requires reaction with acid,
quantification of which is contingent on
the exact origin of these boundary layers.
Alvarez et al. (1995), explained the distinc-
tive composition of the boundary bed by
postulating a glassy parent material or
high temperature. These factors would
kinetically favor base leaching, but there
remains a need for acid to carry out this
marked chemical mass transfer.    

The boundary and impact beds have
been interpreted as fallout from separate
impacts within months of one another
because the boundary bed has plant
remains interpreted as root traces trun-
cated by the impact bed (Fastovsky et al.,
1989; Izett, 1990). By this view the bound-
ary bed represents ejecta from the Chicxu-
lub crater, and the source of the impact
bed was thought to be the Manson crater,
Iowa (Izett, 1990). However, the Manson
crater is now known to be about 10 m.y.
older than the K-T boundary (Izett et al.,
1993). In addition, shocked zircons from
the K-T impact layer have crystallization
ages much younger than found near the
Manson crater, and they are compatible
with the age of target rocks around Chic-
xulub (Kamo and Krogh, 1995). Further-
more, isotopic measurements of Sr, O,
and Nd on K-T impact glasses are similar
to Chicxulub, rather than Manson melt
(Blum et al., 1993). In view of this evi-
dence against two impacts, Alvarez et al.
(1995) interpreted the root traces as trun-
cated plant stalks and proposed that the

boundary bed is altered glassy ejecta from
an early ejecta blanket of melt, shocked
rocks, and admixed sea water, followed
within hours by fallout from a warm fire-
ball with volatiles, rocks, and shocked
quartz.

Decisive evidence for either view
is the nature of fossil plant debris in the
boundary layer. The concertinalike defor-
mation of the plant material is an indi-
cation that it was there in life position
before burial and compaction of the
sediments (Fastovsky et al., 1989), as
would be true for either plant stalks or
root traces. However, the structures in the
boundary bed are plant stalks, because
they are 5 mm or more in diameter and
lack the fine rootlets that accompany large
roots. Decisive evidence that these are not
roots is the way some of these carbona-
ceous structures branch and are frayed
upward (Figs. 2 and 3). My preference is to
interpret both impact and boundary beds
as different phases of a single impact, but
acid consumption for double impact and
local derivation also has been calculated.

COMPUTING ACID CONSUMPTION

Both weak acids of weathering and
strong acid rain have the effect of displac-
ing basic cations (Ca2+, Mg2+, K+, Na+) with
hydronium (H+) by hydrolysis. Using pro-
cedures from studies of modern soil acidi-
fication (Fölster, 1985), the loss of basic
cations can be used to calculate the moles
of hydronium consumed from weight per-
cent analytical values and bulk density
compared with parent materials of K-T
boundary beds and paleosols (Appendix 1;
data from Fastovsky et al., 1989; Retallack,
1994). Units of equivalents to hydronium
were used rather than moles because of
the differing hydronium contents of the
likely acids (HNO3; H2SO4). 

These estimates of acid consumption
are conservative for the following four rea-
sons. First, acid consumption by C hori-
zons was not included, because these sedi-
ments were considered parent materials.
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Second, allowances were not made for
acid-induced aluminum loss, because
the paleosols retained clay and had little
variation in alumina/silica ratios, with
no chemical or petrographic indications
of podzolization (Retallack, 1994). Third,
potential loss of soil material by landscape
denudation was not included because the
paleosols were in a large sedimentary
basin (Smit et al., 1987; Rigby and Rigby,
1990). Fourth, coaly horizons were not
included, because their low mineral
content was probably original rather than
due to hydrolytic destruction of minerals
(Retallack, 1994). 

The most critical assumption of these
calculations is parent-material composi-
tion, against which base loss was assessed.
Separate samples were taken as parent
materials for Cretaceous and Paleocene
paleosols (Table 1), because of changes
in alluvial source areas (Retallack, 1994).
Because the boundary claystone paleosol
formed on an airfall deposit whose ulti-
mate origin can be interpreted in several
ways (Izett, 1990; Fastovsky et al., 1989;
Alvarez et al., 1995), all conceivable parent
materials were estimated: local Cretaceous
and Paleocene sediments  (Retallack,
1994), the impact bed at Brownie Butte
(Fastovsky et al., 1989; Izett, 1990), melt
rock from Chicxulub crater, Mexico
(Hildebrand et al., 1991), impact glasses
from Beloc, Haiti (Sigurdsson et al., 1991,
1992) and Mimbral, Mexico  (Smit et al.,
1992), and glasses, microbreccias, and tar-
get rocks from the Manson crater, Iowa
(Koeberl and Hartung, 1992). These vari-
ous calculations were done to cover a vari-
ety of potential interpretations.

BACKGROUND 
ACID CONSUMPTION

Potentially exceptional acidification at
the K-T boundary must be compared with
background acidification due to normal
weathering. The calculations (Fig. 4) show
that the total amount of acid consumed by
mineral horizons of the paleosols was not
much different from Late Cretaceous to
early Paleocene. This result is supported by
Bell (1965), who found base-rich clay near
the boundary (Fig. 4). It is also supported
by the lack of change in paleosol depth
functions of barium/strontium and
base/alumina ratios, of trace metals such as
Cu, Ni, and Zn, and of rare earths across
the K-T boundary (Retallack, 1994). There
is no significant difference between four
Cretaceous paleosols analyzed that used on
average 5297 ± 3758 keq/ha acid (error of
1σ) and nine Paleocene paleosols that used
2069 ± 1481 keq/ha. 

Estimated total acid consumption of
the paleosols does not take into account
their different times for formation. Some
paleosols retained clear relict bedding, and
are effectively sediments disrupted by only
a few seasons of root growth. Other paleo-

sols had well-mixed clayey subsurface
horizons of the kind that form over thou-
sands of years. Estimates of the rate of acid
consumption (in keq · ha–1 · yr–1) used
maximum values for duration of ancient
soil formation estimated by comparison
with studies of morphological (not chemi-
cal) differentiation of Quaternary soils.
These time estimates are discussed else-
where (Retallack, 1994). The calculated
minimal rates of acid consumption of Late
Cretaceous and early Paleocene paleosols
are not appreciably different from each
other or from those of Holocene soils (Föl-
ster, 1985), which generally fall between
limits of 0.2 and 2.3 keq · ha–1 · yr–1. The
four latest Cretaceous paleosols had an
average rate of acid consumption of 2.0 ±
1.7 keq · ha–1 · yr–1, and the nine earliest
Paleocene paleosols had a rate of 0.9 ± 0.4
keq · ha–1 · yr–1. 

These unsurprising rates and total
acid consumption for paleosols above and
below the boundary are evidence against a
long-term volcanic or meteoritic contribu-
tion to paleosol acidity in Montana. In
addition, paleosols near the boundary in
Bug Creek are somewhat less calcareous
but more smectitic than paleosols earlier
in the Cretaceous or later in the Paleocene
(3-26 m in Fig. 4). Eruption of the Deccan
Traps has been proposed to have released
5 × 1017 moles CO2, 1.7 × 1017 moles
H2SO4, and 7.4 × 1015 moles HCl (Caldeira
and Rampino, 1990), but the effect of this
acid was mitigated by smaller doses spread
out over about 600,000 yr (Courtillot
et al., 1990).

MINIMAL ACID CONSUMPTION
AT THE K-T BOUNDARY

An estimate of minimum acid con-
sumption from the boundary bed indi-
cates that strong acid was involved, rather

than merely weak acids such as carbonic
acid. The unique arrangement of impact
over boundary bed allows assessment of
minimal acid use of the boundary bed in
excess of that used by the overlying
impact bed at Brownie Butte (Table 1). The
boundary claystone and its plant debris is
more acidified by at least 5.4 keq/ha than
the sharply overlying, well-bedded, smec-
titic impact layer (Figs. 1 and 2, Table 1).
This significant acidification could not
have been created by deposition or alter-
ation early during burial, for the following
reasons. There are no local kaolinitic
source beds or diagenetic mechanisms that
would form the boundary bed in so many
separate depositional basins (Izett, 1990).
The boundary claystone may have been
leached downward from overlying lignitic
paleosols at Brownie Butte, as argued for
other kaolinitic coal partings (Staub and
Cohen, 1978; Demchuck and Nelson-
Glatiotis, 1993), but this would have
affected the overlying impact bed as well.
The boundary bed was much more pro-
foundly leached than the overlying
impact bed. 

This minimal value of 5.4 keq/ha
for the boundary claystone is evidence
for strong acid leaching. It is significantly
greater than for paleosols at the boundary,
which could have consumed as little as an
unexceptional 0.2 ± 0.006 keq · ha–1 · yr–1.
The boundary bed is an order of magni-
tude thinner than the paleosols, yet this
small volume consumed more than twice
as much acid. This leaching would have
been in place within a soil over a period
of months by the two-impact model of
Fastovsky et al. (1989), and Izett (1990),
but it is more likely that it was leached
during emplacement and within hours

TABLE 1. TOTAL ACID CONSUMPTION OF K-T BOUNDARY AND IMPACT BEDS AT BROWNIE
BUTTE, MONTANA, FOR VARIOUS ASSUMED PARENT MATERIALS AND HYPOTHESES

Assumed parent material Number Bulk Acid Acid Data 
of density consumption, consumption, source*

analyses g/cm3 boundary impact 
claystone bed 
keq/ha keq/ha

Hypothesis of single impact (favored here)
Chicxulub melt, Mexico 2 2.5† 299.7 158.5 1
Tektite, Beloc, Haiti 19 2.8† 647.8 318.5 2
Tektite, Mimbral, Mexico 3 2.5† 327.9 144.5 3

Hypothesis of multiple impact
Glass, Manson, Iowa 6 2.5† 159.9 74.6 4
Country rock, Manson, Iowa 16 2.5† 276.5 132.9 4
Hypothesis of local derivation
Paleocene, Montana (R513) 1 1.93 ± 0.05 136.0 62.6 5
Cretaceous, Montana (R610) 1 2.07 ± 0.05 158.7 73.8 5

Relative acidification for all hypotheses
Impact bed, Montana 2 2.02 ± 0.08 5.4 0 6
Boundary bed, Montana 2 1.92 ± 0.01 0 –10.8 6

*1: Hildebrand et al. (1991); 2: Sigurdsson et al. (1992); 3: Smit et al. (1992); 4: Koeberl and
Hartung (1992); 5: Retallack (1994); 6: Fastovsky et al. (1989).

†Estimated values: other densities were measured (Retallack, 1994).
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before the later-settling bed of high-energy
ejecta from the same impact (Alvarez et
al., 1995). For comparison, a modern soil
from near Unadilla in upstate New York,
after experimental application of rain of
pH 3.5, maintained a pH of 4.1 in mineral
horizons and lost 7.8 keq · ha–1 · yr–1 from
these horizons (Cronan, 1985), which is
comparable to the loss estimated here for
the boundary bed in Montana and about
three times the loss from weak acids
(Fölster, 1985). The calculated 5.4 keq/ha
spread out over a year proposed by the
two-impact model (Fastovsky et al., 1989)
is comparable to modern soils locally pol-
luted by mine waste or industrial acid.
By the single-impact model (Alvarez et al.,
1995), this is a dramatic short-term
acidification.

MAXIMUM ACID CONSUMPTION
AT THE K-T BOUNDARY

There are several ways of assessing
upper limits to acid consumption of soils
and boundary beds at the K-T boundary
in Montana. A direct calculation for two
paleosols at the boundary in Bug Creek
gives an average consumption of 6585 ±
199 keq/ha. These paleosols show profile
differentiation and little remaining relict
bedding compatible with some 15 ka
of soil formation, which would give a
rate of acid consumption of 0.2 ± 0.006
keq · ha–1 · yr–1. These values are normal
for Late Cretaceous, early Paleocene, and
late Quaternary soils, as already men-
tioned. There is no indication of podzoli-
zation in the petrographic or chemical
composition of the boundary bed or other
paleosols of Montana (Retallack, 1994),
so that pH is likely to have been buffered
to above 4. This figure is supported by the
pattern of extinction of different kinds
of organisms across the K-T boundary in
Montana. Considering acid tolerances of
related living creatures (Howells, 1990;
Weil, 1994), groundwater pH in Montana
was probably less than 5.5 but no less
than 4.

A dramatically different view emerges
from calculations based on the impact
and boundary beds at Brownie Butte, for
which a maximal acid consumption of
986 keq/ha can be calculated by using
parent material with the composition of
tektites from Beloc, Haiti (Table 1). By
the model of Alvarez et al. (1995), this
amount of acid would have been con-
sumed within hours; by the model of Fas-
tovsky et al. (1989), it would have been
consumed within a year. This more seri-
ous acid load is compatible with prior the-
oretical estimates of acid production. Esti-
mates on the production of NO2 by a
bolide capable of creating K-T geochemi-
cal anomalies have varied from 1 × 1014 to
1.2 × 1017 moles (Lewis et al., 1982; Prinn

and Fegley, 1987; Zahnle, 1990) or some
2–2350 keq/ha of Earth’s surface area. An
additional source of acid on short time
scales is vaporization of anhydrite evapor-
ites under the impact crater of Chicxulub,
Mexico (Hildebrand et al., 1991; Sigurds-
son et al., 1992; Brett, 1992; Sharpton et

al., 1993). This may have produced 4 ×
1017 to 1.3 × 1019 g SO2 (Brett, 1992; Sig-
urdsson et al., 1992), which is 6.2 × 1015

to 2.0 × 1017 moles, or 254–7840 keq/ha
globally. Wildfires would produce compa-
rable amounts of NO and CO2 (Zahnle,
1990), perhaps focused at the boundary

Figure 3. Annotated field photograph of the K-T boundary beds at Brownie Butte (A), with scanning
electron micrographs of the impact bed (B) and boundary claystone (C). The pelletoidal and vuggy
microstructure of the boundary claystone reflects vigorous acid leaching, which the later-settling lami-
nated impact bed largely escaped. Scales are in millimeters for the field photograph and in micrometers
for the micrographs.

Figure 2. The K-T boundary and impact beds near Brownie Butte (SE1⁄4SW1⁄4SW1⁄4SW1⁄4 , sec. 32, 
T. 21 N., R. 37 E., Garfield County), Montana. The branching and upward-forked brown carbonized
material in the pink boundary bed (arrow) is a frayed shoot, as predicted by the model of Alvarez et al.
(1995), not a root, as interpreted by Fastovsky et al. (1989).

K-T Boundary continued from p. 3
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(Wolbach et al., 1988; Tinus and Roddy,
1990). An additional estimate from hypo-
thetical oceanic titration (d’Hondt et al.,
1994) is a total acid load of no more than
5 × 1016 moles, or 980 keq/ha globally.
The maximal acidification of the bound-
ary bed estimated here indicates that
the lower estimates of acid load are rea-
sonable, but the higher estimates are
excessive.

If generated, then where did all this
acid go to leave associated paleosols only
mildly acidified? One possibility is con-
sumption by reaction with impact ejecta.
Assuming the single-impact model of
Alvarez et al. (1995), rock of the low-energy
ejecta curtain would have been attacked
by acid generated from entrained SO2 and
NOx as it cooled during or shortly after
ballistic emplacement, unless quenched
and diluted by fallout in the deep ocean
(as for glasses of the Carribean area
described by Sigurdsson et al., 1992; Smit
et al., 1992). The volume of ejecta thrown
up by the impact at Chicxulub has been
estimated to be 1–2.2 × 104 km3 (Kring,
1995). If all of this were leached to the
degree seen in the boundary bed from a
composition similar to Haitian tektites, it
would consume 7.1 × 1011 eq of acid. The
remainder of the broadcast acid could eas-
ily be accommodated by the mild acidifi-
cation seen in the paleosols at Bug Creek.
This is the most optimistic atmospheric
scrubbing of acid imaginable, so some of
the hypothetical estimates of acid produc-
tion cited above can be still regarded as
excessive.

A short burst of acidic leaching not
only explains the base-poor, kaolinitic
composition of the boundary bed, but also
its anomalously low Ni, Co, and Ir content
for either meteoritic or volcanic material
(Izett, 1990) and its peculiar spherulitic
and vuggy microtexture (Fig. 3). Because
iridium concentrations would be dispersed
and shocked quartz, spherules, and other
indicators of impact origin obliterated
by this chemical leaching, their absence
in the boundary bed does not require
hypotheses of ballistic sorting (of Alvarez
et al., 1995). Such acidic leaching of irid-
ium and shocked quartz from impact
ejecta could explain weak to nonexistent
geochemical and mineralogical signatures
at other major extinction events (Orth
et al., 1990). Thus, acid generated by
impact could make some impacts geo-
chemically “self cleaning.”

Increased weathering induced by acid
has been invoked to explain anomalous
enrichment of crustal strontium in marine
foraminifera at the K-T boundary (Mac-
Dougall, 1988; Martin and MacDougall,
1991). Crustal strontium also could have
been leached to the ocean from the hot
fallout preserved as the boundary bed.

K-T Boundary continued on p. 6

Figure 4. Measured
section of paleosols and
selected indices of
weathering across the
K-T boundary in cliffs
and a low knoll north
of Bug Creek (NW1⁄4
NW1⁄4SE1⁄4 , sec. 17,
T. 22 N., R. 43 E.,
McCone County),
Montana. Black boxes
indicate positions of
the paleosols; lengths
of boxes correspond to
degree of development
(Retallack, 1990). The
calcareousness scale is
for field reaction with
1.2M HCl (Retallack,
1990), hue data are from
Munsell charts, and clay
mineral data are by X-ray
diffraction (Bell, 1965).
The impact bed and
boundary claystone
(open circles) were not
preserved in Bug Creek,
but are known from
Brownie Butte, Montana.
Their acid use is plotted
assuming derivation
from Chicxulub melt,
but calculated use varies
with other assumed par-
ent materials (Table 1).
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BIOTIC EFFECTS

The amount of NO2 produced by the
bolide at the K-T boundary has been esti-
mated at globally averaged atmospheric
concentrations of about 0.5 ppm V (Lewis
et al., 1982) or 21 µmol/m3. A comparable
amount of SO2 is known to injure leaves
directly (Whitmore, 1985; Howells, 1990).
Doses near the source would have been
much higher than this globally mixed
average. The high-temperature acid vapor
and melt ejecta proposed by Alvarez et al.
(1995) would have been particularly
lethal, its effects tapering off with
distance from the impact.

In Montana, reconstructed at
3330 km from the Chicxulub crater
(Kring, 1995), noxious gases, acid, and
warm leached ejecta raining out to a 2 cm
layer would still have had a significant
effect on large plants and animals. Scald-
ing by later cool acid rain, darkening of
the sky by dust, chilling of the atmosphere
by dust shielding, and then warming by a
greenhouse effect (Prinn and Fegley, 1987;
Zahnle, 1990) would thus have been addi-
tional insults to a biota already trauma-
tized by acidic fluids and ejecta. Acidic
trauma may explain the transition in
Montana from eutrophic angiosperm-
dominated semievergreen forests to a fern-
dominated recovery flora and then to olig-
otrophic conifer-dominated swampland
(Wolfe and Upchurch, 1987; Nichols et al.,
1990; Johnson and Hickey, 1990), and
from herbivorous to insectivorous verte-
brates (Sheehan and Fastovsky, 1992). 

Even within a single area such as
Montana, different organisms fared differ-
ently across the K-T boundary. The aquatic
molluscs were severely affected (Morris,
1990), but amphibians and fish were little
affected (Archibald and Bryant, 1990;
Weil, 1994). Molluscs would have been
excluded by pH less than 5.5, but greater
losses of fish and amphibians would have
been expected at pH less than 4 (Howells,
1990; Weil, 1994). Acid buffering by cal-
careous smectitic soils may have been
important to the survival of small birds,
mammals, reptiles, amphibians, and fish.
Similarly, oceanic mixing and buffering
may have diluted acid to no less than
pH 7.6, so that many of the ammonites
and coccolithophores died, but other
molluscs, radiolarians, and acid-sensitive
dinoflagellates survived (d’Hondt et al.,
1994). Biotic effects of acid rain would
have been more severe in less well
buffered soils of humid granitic terrains
and in shallow seas receiving runoff from
such regions. Thus, impact-generated acid
could have been a selective kill mecha-
nism from place to place, and within the
same ecosystem, if buffered to reasonable
levels by wide dispersal and reaction with
ejecta, soils, and the ocean. 
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APPENDIX 1. FORMULAE FOR
CALCULATING ACID CONSUMPTION
OF SOILS AND PALEOSOLS

B = 2ρ(0.01783C + 0.02481M + 0.01062K +
0.01613N)/100

Ti = [(D i + D i – 1) – (D i + D i + 1)]/2

A = Σ Ti(Bp – Bi)

Symbols:
A = acid consumption of profile (eq/cm2)
B = base content of sample (eq/cm3)
C, M, K, N = CaO, MgO, K2O, Na2O,

respectively (wt%)
D = depth to sample (cm)
T = thickness represented by sample (cm)
ρ = bulk density (g/cm3)

Subscripts:
i = for sample i
i + 1 = for sample or surface above i
i – 1 = for sample or parent material

below i
p = for parent material

Constants:
0.01738,0.02481, 0.01062,0.01613 = ele-

ment in oxide (mole)
2 = equivalence adjustment
100 = weight percent adjustment

K-T Boundary continued from p. 5
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