
ABSTRACT

A change to global greenhouse con-
ditions following deglaciation occurred
during the late Paleozoic. The deep-past
data set preserved in the stratigraphic
record can serve as a model system to
understand vegetational responses dur-
ing this kind of climatic change, espe-
cially in the tropics. No other time in
Earth history so mimics the late Ceno-
zoic or provides the long-term data
set from which generalizations can be
deduced. Two long-term glacial cycles
have been identified in Permian-Car-
boniferous time. The waxing and wan-
ing of glaciers during the height of
either ice age resulted mainly in spatial
displacement of vegetation, and also in
minor variations in tropical climate.
Brief intervals of rapid deglaciation at
the end of the Middle Pennsylvanian
(Westphalian) and mid–Early Permian
(Sakmarian) were accompanied by
major changes in plant assemblages,
including extinctions, changes in the

spatial distribution of plants in the
tropics and temperate zones, and nearly
synchronous changes in the structure
of vegetation throughout the globe.
Although the plants of the late Paleo-
zoic and the geography of that time
differed entirely from those of today,

the rates, geographic distribution, and
nature of vegetational changes can serve
as portents of similar patterns in the
transition to a modern greenhouse
world.
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Figure 1. Reconstruction of middle late Carboniferous tropical coal swamp showing different plant
communities made up of tree lycopods (L, tree club mosses), tree sphenopsids (two brushlike trees
above letter S in center and tree scouring rushes), tree ferns (F), pteridosperms (P, seed plants with
fernlike leaves; extinct group), and cordaites (C, seed plants with strap-shaped leaves; extinct group).
From a painting by Alice Prickett, published in black and white in Phillips and Cross (1991, pl. 4). 
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INTRODUCTION

Current debate over global warming
has not resolved whether empirical obser-
vations reflect short-term excursions
within longer term cyclical oscillations of
climate or if they reflect a unidirectional
long-term trend (Graham, 1995; Thomp-
son, 1995; Webb, 1995). Regardless, a
global greenhouse stands in marked con-
trast to the past 20 m.y. of glaciation and
icehouse climate (Fischer, 1982). Conse-
quently, the most recent icehouse period
may be a poor model from which to
deduce the likely dynamics of vegetational
change under continuously directional
warming. Other periods of pronounced

greenhouse climate, such as the Late Cre-
taceous and late Eocene, do not reflect the
icehouse-greenhouse climate transition.
Rather, these intervals of time represent
high points or thermal maxima within
long-persistent greenhouse intervals
(Ziegler et al., 1987), rendering them
unsuitable as analogs for the present or
the near future (Sellwood et al., 1994).
The only time in Earth history when the
mosaic of a complex terrestrial vegetation
(Fig. 1) was subjected to a transition from
icehouse to greenhouse conditions, similar
to the one we may now be experiencing,
was during the late Paleozoic (Frakes et al.,
1992; Crowley, 1994). Comparison of the
present and this deep-past record can lead
us to a more realistic framework from
which to attempt a prediction concerning
the dynamics of vegetational change dur-
ing a period of icehouse to greenhouse cli-
matic change.

In any period of rapid environmental
modification it will be crucial to under-
stand the fundamental principles that
underlie vegetational change and recovery
from disturbance. Such principles can be
deduced from an understanding of late
Paleozoic vegetational responses because
of several parameters. The biota of the late
Paleozoic was entirely distinct from that of
today, providing an independent data set
from which we can deduce general plant
responses to changing extrinsic condi-
tions. This is due, in large part, to the
presence of similar environmental stresses
that resulted in plant responses producing
plant structure and architecture (sensu
Halle, et al., 1978), life history spectra, and
reproductive strategies similar to those of
vegetation of the present. The floristic bio-
geography and zonation of the late Paleo-
zoic parallel those of today (Ziegler, 1990).
Overall, then, the systematic differences
can be viewed as a means of strengthening
the possibilities of recognizing fundamen-
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tal processes and permitting generaliza-
tions to be made about how vegetation
responds to changing climate. The late
Paleozoic plant record consists of assem-
blages that are preserved with high resolu-
tion and fidelity (Behrensmeyer and Hook,
1992; Burnham, 1993) in sedimentary
environments representing fluvial, lacus-
trine, coastal plain, and deltaic settings.
Plants colonized a wide variety of sub-
strates, and communities are known from
peat and clastic alluvial sediments. These
assemblages provide snapshots in time of
vegetational patterns during both glacial
and interglacial cycles over the entire ice-
house-greenhouse interval. Finally, late
Paleozoic tropical plants and plant ecosys-
tems are as well known as and possibly
better known than their Holocene coun-
terparts, in terms of their long-term
response to abiotic stresses (sea level and
climate fluctuations). From the late Paleo-
zoic record, we conclude that many effects
of an icehouse-greenhouse transition will
probably be expressed dramatically in the
tropics.

The late Paleozoic encompasses the
decline of Earth’s primeval forests and
their replacement by seed-plant-domi-
nated vegetation more typical of the
Mesozoic. Increases in greenhouse gasses
during the late Paleozoic occurred over
millions of years (Berner, 1990, 1991;
Graham et al., 1995). In contrast, similar
accumulations may occur within markedly
shorter intervals of time today (Francey et
al., 1995). However, the time required for
changes in plant life might not be signifi-
cantly different. While late Paleozoic
stages, as defined by plant fossils, lasted
from 1 to 2 m.y., the change from one
flora to another (widespread extinction,
radiation, and propagation) marks the
boundary between stages. We cannot yet
put numerical values on the length of

time over which these turnovers occurred.
However, the resolution of time within
stratigraphic sections is increasing. In spe-
cific cases it is possible to constrain time
either in the range of orbital cycles or even
months for tidal sediments. In the near
future we can expect to find stratigraphic
sections that will allow us to put numeri-
cal values both on the duration of change-
overs and on intervals of stasis. We
expect change-overs to be in the range
of 1–10 ka.

LATE PALEOZOIC GLACIATION

Polar glaciation began in the latest
early Carboniferous (Visean-Namurian)
and fluctuated in magnitude throughout
the Permian-Carboniferous (Fig. 2). Dur-
ing these 75+ m.y., two ice ages peaked,
one during the late Middle Pennsylvanian
(late Westphalian) and the other in the
Early Permian (Sakmarian). Orbital-driven
glacial and interglacial oscillations were
superimposed on these long-term trends
(Frakes et al., 1992). The maximum extent
of ice caps expanded gradually over the
continents, taking an estimated 20 m.y. to
reach their greatest coverage. Increasing
evidence indicates that each ice age termi-
nated abruptly over 1–10 ka.

The extent of polar glaciations (cover-
age and ice mass) during Milankovitch
cycles has a direct effect on the distribu-
tion of rainfall in the tropics by affecting
the pattern of atmospheric circulation and
the latitudinal range and width of the
intertropical convergence zone (Ziegler
et al., 1987; Pfefferkorn, 1995). During
glacial maxima, the intertropical conver-
gence zone contracts toward the equator
and migrates over a narrower latitude,
resulting in ever-wet conditions within its
area of influence. In contrast, during inter-
glacial intervals, the intertropical conver-
gence zone expands latitudinally and
migrates during the yearly cycle over a
wider latitudinal belt, resulting in a

change of climatic patterns and greater
oscillations in seasonal moisture availabil-
ity in the tropics. Specifically, there are
much larger areas that experience strong
wet-dry seasonality.

During the Middle Pennsylvanian
(Westphalian) ice age, the waxing and
waning of polar ice caps and glaciers were
represented in the Euramerican tropics by
cyclical sedimentary patterns. During Mid-
dle Pennsylvanian (Westphalian) glacial
maxima, extensive peat-accumulating
swamps developed under an ever-wet cli-
mate. Marine sediments reflecting a wide
variance in climate were deposited during
interglacial periods (glacial minima). Such
sea-level changes are evidenced by paralic
sequences bounded by transgressive ero-
sional surfaces (Gastaldo et al., 1993) and
may be covariant with changes from ever-
wet to seasonally dry climates (Cecil,
1990). During the Early Permian glacia-
tions, in contrast to the Westphalian, peat
accumulation was far more limited and
localized in areas of wettest tropical cli-
mates. Interglacials of that time period
also were more intensely seasonal than
comparable intervals in the Westphalian,
on the basis of vegetational and paleosol
patterns (Broutin et al., 1990).

During the Late Pennsylvanian
(Stephanian), which falls between the two
ice ages, Earth may have been warmer
(Dorofyeva et al., 1982). Evidence from
coal-resource distributional patterns
(Phillips and Peppers, 1984) and from bio-
facies analysis (DiMichele and Aronson,
1992) indicates a generally drier or more
seasonal Late Pennsylvanian (Stephanian)
interval with pulselike oscillations
between overall wetter and drier periods.
These oscillations continued into the Per-
mian, with an increasing prominence of
drier climates in tropical lowland and
intermontane areas. Drying continued
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throughout the Permian, and ice caps and
peat-accumulating systems were lost
(Retallack, 1995). By latest Permian time,
compressional tectonics, the oxidation of
peat resources, and volcanic processes may
have introduced vast quantities of CO2
into the atmosphere, driving global tem-
peratures toward their maximum (Erwin,
1996).

LATE PALEOZOIC VEGETATION

The beginning of the Carboniferous
is marked by a radiation of vascular plants
that established five major groups. During
the late Paleozoic, ecological dominance
was strongly partitioned by the different
higher taxonomic groups (see Fig. 1): tree
club mosses (rhizomorphic lycopsids) in
swampy wetlands; tree scouring rushes
(sphenopsids) in aggradational environ-
ments; ferns, including tree ferns, as weeds
in a variety of disturbed settings; and seed
plants (seed ferns or pteridosperms and
cordaites) in better drained habitats. How-
ever, temporal and spatial exceptions are
known to have existed—as, for example,
peat-forming cordaites and pteridosperms.
The dominance of each group of plants in
a particular environment distinguishes the
Carboniferous from later time periods. By
the end of the Paleozoic, these patterns
and groups had yielded, through a series
of steps, to seed plants, which began to
dominate in most habitats throughout
the world (Niklas et al., 1983).

Permian-Carboniferous terrestrial veg-
etation can be divided into three broad
biogeographic realms (Fig. 3): (1) the
pantropical Euramerican (or Amerosinian)
floral realm (Wagner, 1993), the best
known and most intensively studied, (2)
the north-temperate Angaran floral realm
(Meyen, 1982), and (3) the south-temper-
ate Gondwanan floral realm (Archangel-
sky, 1990). These three biogeographic
realms were occupied by different plants,
but the vegetational turnover occurred in
all three at about the same time (Wagner,
1993). However, there might be differ-
ences in the timing of turnover of as much
as one stage between different climatic
belts, owing to the buffering of environ-
mental change by local or regional physio-
graphic differences and the resulting lag
time in vegetational turnover. These major
vegetational turnovers appear to be in part
the result of geologically rapid (1–10 ka)
migrations of groups of plants from one
climatic belt to another. In contrast, slow
migration of genera or species over mil-
lions of years has been documented by
Laveine (1993). These two processes are
different in nature and should not be con-
fused. Knowledge of the slow migration
can improve our understanding of biogeo-
graphic barriers during times of evolution-
ary stasis.

Major vegetational changes have been
noted at the base of the Late Carbonifer-
ous, within the Early Pennsylvanian
(Namurian), near the Middle-Upper Penn-
sylvanian (Westphalian-Stephanian)
boundary, during the transition from the
Carboniferous to the Permian, and near
the Sakmarian-Artinskian boundary. Each
changeover corresponds to significant
increases or decreases in polar ice volumes
and global temperature (Fig. 2). In all
these cases and in all parts of the world,
the patterns of vegetational organization
yield to increased dominance by oppor-
tunistic weedy taxa or, ultimately, to the
extinction-resistant life histories of seed
plants.

TROPICAL PATTERNS

Each of the floral realms can be subdi-
vided into “biomes” characteristic of par-
ticular climatic and ecological conditions,
and each is further subdivisible into land-
scape units. The Euramerican realm

includes a “wet” biome, characterized by
mire (peat-forming) and clastic (flood-
plain) wetland vegetation. These are the
plants typically reconstructed in most Car-
boniferous “coal swamp” dioramas. Less
well known, but present throughout most
of the Late Carboniferous, was a tropical
“dry” biome with a flora rich in gym-
nosperms and which included conifers
(Lyons and Darrah, 1989). This flora
entered the tropical lowlands only during
short periods of regional dryness (probably
the result of increased seasonality; Elias,
1936; DiMichele and Aronson, 1992). 

Mires within the “wet” biome were
dominated by lycopsids and cordaites
throughout the Middle Pennsylvanian
(Westphalian); tree ferns appeared in mires
of the latest Middle Pennsylvanian
(mid–Westphalian D). Following major
extinctions at the Middle-Late Pennsylva-
nian (Westphalian-Stephanian) boundary
that reached nearly 70% of the known
species (DiMichele and Phillips, 1996),

Figure 2. Relation between global glaciation and vegetative change during the late Paleozoic in different
tropical environments and the north and south temperate belts. Glacial ice extent, from Frakes et al.
(1992), is based upon tillites (glacial) and ice-rafted deposits (IRD). Vegetation distributional patterns
are derived from sources cited in the text. M = Mississippian; Pa = Pennsylvanian; E = Early; L = Late;
VIS = Visean; NAM = Namurian; WES = Westphalian; STE = Stephanian; ASS = Asselian; SAK = Sakmarian;
ART = Artinskian; KUN = Kungurian; KAZ = Kazanian; TAT = Tatarian; CHES = Chesterian; MORR = Mor-
rowan; ATOK = Atokan; DESM = Desmoinesian; MISS = Missourian; VIRG = Virgilian; WOLF = Wolf-
campian; LEON = Leonardian; GUAD = Guadalupian.

Figure 3. Distribution of
floral realms in latest
Pennsylvanian time
(290 Ma). Northern

temperate (Angara), tropical
(Euramerica), and southern

temperate (Gondwana)
realms can be distinguished.

Continental position
redrawn from Denham and

Scotese’s 1988 computer
program, Terra Mobilis. 
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tree ferns dominated Late Pennsylvanian
mires.

Clastic wetland habitats were largely
pteridosperm dominated throughout the
Middle Pennsylvanian (Gastaldo, 1987).
Beginning in the latest Middle Pennsylva-
nian, tree ferns rapidly established them-
selves as codominants and continued as
dominant to codominant taxa throughout
the Late Pennsylvanian (Pfefferkorn and
Thomson, 1982). The predominance of
tree ferns during the Late Pennsylvanian
followed extinctions in the clastic wet-
lands that, although less severe, paralleled
those of the mires. The extinctions within
the pteridosperm groups were accompa-
nied by speciation that vastly increased
the number of tree fern taxa of the later
Paleozoic (Fig. 4).

The extinction events at the Middle
Pennsylvanian–Late Pennsylvanian (West-
phalian-Stephanian) boundary induced
a thresholdlike internal reorganization
of the wetlands (DiMichele and Phillips,
1995). The tree ferns that became domi-
nant descended from opportunistic weedy
forms in the older Westphalian land-
scapes. These plants were well suited to
compete for space and resources in dis-
rupted, postextinction landscapes, owing
to their reproductive strategy of producing
massive quantities of highly dispersible
spores, a “cheaply” constructed body (one
consisting largely of simple parenchyma
cells), and an ability to tolerate low nutri-

ent conditions. This signaled the begin-
ning of the breakdown of the landscape
between groups of plants. The high taxo-
nomic level at which the data are summa-
rized in Figures 2, 4, and 5 masks certain
patterns at lower levels of ecological
organization, particularly the persistence
of dominance-diversity patterns within
habitats and the replacement of species
on ecomorphic themes through time
(DiMichele et al., 1996). The major pat-
terns revealed by these data are persistence
of communities and landscapes over mil-
lions of years, disrupted only by major
extinction events that lead to relatively
rapid reorganization and establishment
of new persistent patterns.

In spite of renewed polar glaciation,
pulselike climatic drying continued
throughout the tropics into the Early Per-
mian. Continued drying, in part the result
of Pangean assembly, progressively elimi-
nated tracts of continuous wetland habitat
crucial to the survival of the wet biome.
The exception occurs in south China,
where a Westphalian-type flora persisted
in mires until the Late Permian (Guo,
1990). Seed plants, which were resistant
to increasingly dry conditions by virtue of
both reproductive and vegetative adapta-
tions, became the dominant elements in
most tropical habitats, even in geographi-
cally isolated patches of wetlands. The
Chinese “refugium” never served as a
source for repopulation of the wetlands

elsewhere in the world during the Per-
mian. The transition from the wet to the
dry biome was not accompanied by exten-
sive mixing of the component species.
Rather, each retained its distinctive taxo-
nomic and ecomorphic characteristics.
At this temporal scale, replacement rather
than a competitive displacement is
strongly indicated. Additionally, it appears
that higher levels of ecological organiza-
tion may have spatial-temporal unity
and take part in dynamics not predictable
from the study of lower level population
or community dynamics. The biomic tran-
sition appears to have been independent
of internal vegetational dynamics that
occurred within each biome.

The dry biome became increasingly
dominated by conifers in parts of
Euramerica throughout the Asselian
(Broutin et al., 1990). It was not until the
Sakmarian-Artinkskian deglaciation that
tree ferns re-emerged as dominant ele-
ments within a vegetation that was char-
acterized by a diversity of seed plants
(Read and Mamay, 1964). Their re-emer-
gence indicates a change to increased
moisture availability within the tropics.

NORTH-TEMPERATE PATTERNS

The Angara floral realm was domi-
nated by a lycopsid-rich flora prior to the
onset of polar glaciations (Fig. 5). At or
near the middle to late Namurian bound-
ary, the lycopsid flora was replaced by a
low-diversity but widespread flora domi-
nated by seed ferns and cordaiteans
(Ruflorians) that were persistent through-
out the Middle Pennsylvanian wetlands.
Near the Middle Pennsylvanian–Late
Pennsylvanian boundary a further floristic
change ensued, resulting in the rise of
high-diversity cordaite-dominated assem-
blages (Ruflorian 2 assemblage) (Meyen,
1982); Wagner (1993) suggested that this
floral change may be coeval with time-
equivalent tropical vegetational changes.
The pteridospermalean (seed fern) compo-
nent of the Angaran Middle Pennsylva-
nian flora is the major casualty following
vegetational reorganization. The subse-
quently dominant, cordaite-rich floras
(Ruflorian 3) have been suggested to be
tolerant of freezing conditions. As in the
tropical zone, the floras of Angara become
progressively more enriched in and domi-
nated by other seed plants (gymnosperms)
as major climatic changes caused extinc-
tions in, and reorganizations of, the
regional ecological structure (Fig. 5).

SOUTH-TEMPERATE PATTERNS

As in the tropical and north temper-
ate zones, the Gondwana zone had several
distinct vegetational regions in the late
Paleozoic (Cuneo, 1996b). The northern-
most parts of the Gondwana continent

Figure 4. Changes in domi-
nance patterns of major plant
groups in the clastic swamp
environment of the tropics
throughout the Pennsylvanian
(late Carboniferous) and earli-
est Permian. Data from North
America and Europe (Pfeffer-
korn and Thomson, 1982).

Figure 5. Changes in dominance
patterns of major plant groups in
the clastic swamp environment
of the northern temperate realm
throughout the Pennsylvanian
(late Carboniferous) and Per-
mian. Data from Kazakhstan
(Meyen, 1982).

Greenhouse continued on p. 6
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(northern South America and North
Africa) were in the tropics, and fossil
assemblages from these areas are distinctly
Euramerican. All other parts of the conti-
nent were in the south temperate Gond-
wana biogeographic zone. Major floral
changes occurred on the Gondwana conti-
nent in the Southern Hemisphere at or
near the mid-Carboniferous and Carbonif-
erous-Permian boundaries. Prior to the
mid-Carboniferous and the inception of
glaciation, biomes were characterized by
progymnosperms and pteridosperms.
There is still debate as to the exact timing
of floral change, because the onset of
glaciation may have affected the plant bio-
geography in continental interiors earlier
(Archangelsky, 1990). 

Floristic turnover at the mid-Car-
boniferous boundary is characterized
by a flora that was made up of taxa like
Nothorhacopteris, which appear to be simi-
lar in aspect to forms dominating early
Carboniferous floras in the tropics. Several
of the dominant taxa were considered to
be progymnosperms. However, recent
work has shown that some of them were
pteridosperms (Vega and Archangelsky,
1996; Galtier, 1996). Scouring rushes
(sphenopsids) and club mosses (lycopsids)
also were present, but they were small in
the cooler areas; they grew to tree size
only in the warmer areas (Peru, Niger).
Ferns were rare or absent. The highest
diversity floras occupied the lower lati-
tudes, whereas the low-diversity floras are
known from more poleward regions. 

At or near the Carboniferous-Permian
boundary, this late Carboniferous flora
was replaced by one dominated by seed-
bearing glossopterids, large trees with
deciduous leaves (Cuneo, 1996a). Early
glossopterids appeared suddenly, accom-
panied by the extinction of many of the
Carboniferous elements. The simple vena-
tion of these early forms cannot be distin-
guished from the genus Lesleya that
occurred in seasonally dry areas of the
tropics as early as earliest Pennsylvanian
(Namurian) time in Illinois (Leary, 1980).
If actually related to glossopterids, Lesleya
would have been at least partly preadapted
to a seasonally cold climate of the South-
ern Hemisphere (Leary, 1980; Archangel-
sky, 1990) by virtue of its origin in season-
ally dry parts of the tropics.

The Glossopteris-dominated flora per-
sisted throughout the Permian and diversi-
fied in complexity of leaf venation and
reproductive structures. In addition, tropi-
cal plants appeared in the temperate areas
in response to higher rainfall and due to
the drying of most of the tropical areas.
The temperate areas of Gondwana were
clearly not very cold (Cuneo, 1987), cer-
tainly much warmer than hypothesized
by climate models (Yemane, 1993). This is
reflected in the successful colonization by

conifers, sphenopsids, ferns, pteri-
dosperms, ginkgophytes, and cordaites.
One aspect that has been neglected in
most previous discussions is the fact that
there must have been glacial and inter-
glacial intervals and that the interglacial
periods could have been very warm, pro-
viding for part of the vegetational record.

DISCUSSION

The late Paleozoic offers the best pre-
Pleistocene opportunity to observe the
response of terrestrial vegetation to short-
term and long-term fluctuations in glacial
conditions, the ultimate end of an ice age,
and change to a global greenhouse. In
fact, the patterns of change in the tropics,
in particular, appear to be better docu-
mented for the Permian-Carboniferous
tropics than for those of today. Several
conclusions and generalities can already
be drawn from study of these long-extinct
ecosystems.

Despite difficulties in correlation, a
case can be made for approximate syn-
chroneity of changes in plant communi-
ties throughout the world in response to
severe global physical stresses. These con-
sequences might be offset in time by as
much as a stage because some climatic
belts or environments are able to buffer
consequences of changes until threshold
levels are overcome. The “recovery”
phases following periods of major glacial
onset or retreat are complex and depen-
dent on local factors, both biotic (for
example, ability of species to extend their
ranges into an area) and abiotic.

Ecosystems appear to be able to
“absorb” regional to global species extinc-
tions below some threshold level. Our
data do not yet permit us to pinpoint this
with great accuracy, but it appears to be
less than 50% and probably more than
10% of common species of trees and
shrubs. Such background turnover and
replacement are visible at the species level
in data derived from peat-forming mires
and clastic wetlands. When this threshold
extinction level is surpassed, reorganiza-
tion takes place and results in a different
dominance-diversity structure. Floras and
vegetation in both the tropical and north-
temperate regions persist for millions of
years despite background extinction, only
to change approximately simultaneously
during a period of glacial onset or
deglaciation and global warming.

When ecosystems are physically dis-
rupted by short-term but severe and
widespread perturbations, opportunists
will have a distinct advantage in securing
and maintaining dominance. The low-
land-wetland, tropical Late Pennsylvanian
(Stephanian) is, in some ways, analogous
to an extended “fern spike” recognized as
the initial recovery phase following the
Cretaceous-Tertiary extinction event
(Nichols et al., 1986).

The concept of refugium is elusive.
An area of survival of archaic vegetation
(relative to the rest of a floristic realm)
does not constitute a refugium if the
plants cannot migrate back to previously
occupied areas when conditions return to
those approximating the pre-extinction
environment. Both abiotic factors, such as
the lack of clear routes of dispersal, and
biotic factors, such as incumbent advan-
tage, can prevent an expansion of vegeta-
tion from a potentially refugial area.

Ultimately, species with life histories
and structural adaptations that precondi-
tion them to survive under physically
inhospitable conditions will survive to
attain dominance. During the late Paleo-
zoic these were almost exclusively groups
of seed plants. The pattern has continued,
with subsequent global and regional eco-
logical perturbation resulting in domi-
nance of the landscape by an ever narrow-
ing phylogenetic spectrum of plants after
the late Paleozoic. Within the seed plants,
dominance has been narrowed largely to
angiosperms. Within angiosperms, com-
posites and grasses have become ever more
dominant over wider areas of Earth’s sur-
face as a consequence of climatic changes.

Patterns in the late Paleozoic provide
us with one certainty: global warming pre-
sents plants with conditions that are
markedly different from those found dur-
ing periods of icehouse climate. The wax-
ing and waning of glaciers are, in and of
themselves, a climate-mode to which veg-
etations become attuned. Global warming
breaks the mold and encourages the estab-
lishment, quite rapidly (in geological
terms at a stage boundary; probably on
the order of 1–10 ka), of new kinds of veg-
etation, the origins of which are as much
due to evolutionary innovation as to reor-
ganization of species associations. Extinc-
tions break the hold incumbent taxa have
over the resources and favor or permit the
establishment of new species, although
apparently those descended from oppor-
tunistic and/or extinction-resistant ances-
tors. Past patterns, when coupled with
recently developed ecological concepts
such as the recognition of thresholdlike
responses to perturbation (Kareiva and
Wennergren, 1995), provide a basis to
speculate on responses to change.
Although the interactions between vegeta-
tion and climate are complex, they do
conform to some general and recurrent
patterns that exist on different scales in
space and time. Recognizing patterns and
principles of change at the icehouse-green-
house transitions of the late Paleozoic will
enable us to use this understanding to
make predictions about changes to come.
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