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ABSTRACT
Recent syntheses of Cordillera tectonics 

contain contradictory views of subduction 
polarity in the late Mesozoic, and this con-
tradiction has implications for whole-earth 
processes. The long-held view of east- 
dipping subduction throughout the Late 
Jurassic–Early Cretaceous Cordillera is 
challenged by tectonic models calling on  
a west-dipping subduction system that led 
to the collision of oceanic arcs, ribbon-
continents, or both, with North America. 
Evidence in support of these models are 
seismic anomalies in the deep mantle 
inferred to represent subducted lithosphere 
from a west-dipping slab. We argue that this 
“bottom-up” approach to tectonic synthesis 
carries assumptions that are as great as or 
greater than ambiguities from the “top-
down” approach of surface geology. 
Geologic evidence from the northern 
Cordillera is inconsistent with west-dipping 
subduction in Jura-Cretaceous time and 
requires long-lived east-dipping subduction 
along much of the Cordilleran margin. 
West-dipping subduction in Triassic–Early 
Jurassic time has been documented and 
may be the source of the seismic anomalies. 
We encourage the broader community to 
come to consensus on integration of these 
deep images with surface geology.

INTRODUCTION
Regional syntheses of Cordilleran tecton-

ics were central to the plate tectonic revolu-
tion with a series of papers that placed the 
geology of the continental United States 
into the new paradigm (e.g., Burchfiel and 

Davis, 1972) in which the Sierra Nevada, 
Great Valley, and Franciscan triad formed 
above a late Mesozoic, east-dipping subduc-
tion zone. Similar relations have since been 
used to reconstruct arc polarity in many 
other orogens.

Cordilleran tectonics saw a paradigm 
shift in the late 1970s when paleomag-
netic data (e.g., Hillhouse, 1977) together 
with geologic syntheses led to the terrane 
concept (e.g., Coney et al., 1980). These 
insights led to the recognition that both 
collision and strike-slip juxtaposition 
must have occurred along the Cordillera 
margin, and multiple terranes comprising 
different arc elements were scrambled to 
make the terrane collage.

There has been a recent resurgence in 
Cordilleran-wide syntheses based in large 
part on three new data sources: (1) develop-
ments in geochronology; (2) Earthscope 
geophysical data; and (3) geodetic data that 
reveal active deformation in the Cordillera. 
The integration of these data provides new 
opportunities for understanding the long-
term evolution of the Cordillera. Challenges 
arise from a disconnect between two 
approaches: (1) geological studies that use a 
top-down approach, in which surface geol-
ogy is projected to infer relations at depth 
and back in time; and (2) geophysical stud-
ies that use a bottom-up approach that pro‐
jects features imaged in the lower crust and 
mantle to the surface and back in time. 
Although these approaches should converge 
on a similar solution, they are often dia-
metrically opposed because of different 
underlying assumptions.

We here consider an example of where 
geologic and geophysical interpretations 
lead to fundamentally different conclu-
sions regarding the polarity of subduction 
along the Cordilleran margin during late 
Mesozoic time. We argue from a northern 
Cordilleran perspective that some recent 
syntheses (e.g., Johnston, 2008; Hilde-
brand, 2009; Sigloch and Mihalynuk, 
2017) ignored or dismissed a fundamental 
observation; namely, that there is compel-
ling geologic evidence that subduction 
along the northern Cordilleran margin  
has been east-dipping for at least the last  
~125 m.y., and likely can be traced ~75 m.y. 
further back into the Late Triassic. The 
objective of this article is to compare these 
approaches for evaluating subduction 
polarity in ancient margins. Successful 
integration of the two approaches will be 
required to fully understand the configura-
tion of ancient subduction zones.

FUNDAMENTAL CONTROVERSY 
OF SUBDUCTION POLARITY

Uncertainties regarding the late Mes-
ozoic evolution of the Cordilleran margin 
focus primarily on (1) the size of the ocean 
basin separating the Wrangellia composite 
terrane (WCT) or Insular superterrane 
from the continental margin; and (2) the 
location, polarity, and age of subduction 
zones that closed this basin (Fig. 1). One 
set of models, mainly based on geologic 
observations, shares an interpretation that 
this basin closed during Jura-Cretaceous 
time along an east-dipping1 subduction 
zone built along the continental margin, 
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and that a second east-dipping subduction 
zone existed along the outboard margin of 
the WCT (Figs. 1A and 1B [see footnote 
1]). A second group of models emphasizes 
collision along a west-dipping subduction 
zone on the inboard margin of the WCT 
(Sigloch and Mihalynuk, 2017; Fig. 1C)  
or between the entire terrane collage and 
North America (Johnston, 2008; Hilde-
brand, 2009).

The top-down interpretation of sub- 
duction polarity is based on (1) structural  
vergence in accretionary prisms; (2) the 
presence and position of high-P/T mineral 
assemblages; (3) the location of forearc 
versus backarc strata; and (4) age and geo-
chemical patterns within the magmatic arc. 
These features have been used to infer sub-
duction polarity since the advent of plate 
tectonics (e.g., Miyashiro, 1972; Ernst, 

1973; Dickinson, 1974). These interpreta-
tions are complicated by the potential for 
large-scale displacement along strike-slip 
faults within and between the various  
convergent margin assemblages, and by 
removal of elements by subduction erosion 
or exhumation during collision. These 
complications are the reasons for discrep-
ancies among existing models based on 
geology (Fig. 1). For example, a minimum 
of 700–1500 km of post-latest Cretaceous 
dextral strike-slip is known from geologic 
relationships alone in the northern 
Cordillera (Stamatakos et al., 2001), and 
the total dextral slip could be far larger 
(e.g., Garver and Davidson, 2015). 
Similarly, the boundary between the WCT 
and the continent records closure of an 
ocean basin, a relationship first established 
by Richter and Jones (1973), but along 

much of the suture zone2, exhumation 
along this contact reaches lower-crustal 
depths in the hanging-wall (e.g., Hollister, 
1982), confounding any attempts to recon-
struct the eroded material.

The bottom-up interpretation of polarity 
is based on tomographic images of large, 
near-vertical features in the mantle inter-
preted as subducted slabs (Sigloch and 
Mihalynuk, 2017). These slabs are now in 
the mantle more than 3000 km from their 
presumed paleotrench. To restore the path-
way over this distance requires multiple 
assumptions, including the nature of the 
mantle anomaly, uncertainties in slab 
sinking rates, and models of absolute plate 
motion. Problems with absolute plate 
motion models based on hot spots have 
been known since the first plate recon-
structions that used them (Engebretson  
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Figure 1. End-member models for Early Cretaceous paleogeography. (A) and (B) are both east-dipping subduction 
models distinguished by the magnitude of the east-dipping megathrust between the Insular (Wrangellia composite 
terrane [WCT]) and Intermontane terranes (purple); either as a normal subduction zone (A) or a megathrust closing a 
backarc basin (B) that opened in the Jurassic after an earlier collision of the Insular terrane. Marine basins:  
K—Kahiltna; N—Nutzotin; G—Gravina; M—Methow. (C) West-dipping subduction zone between the Insular (WCT) 
and Intermontane terranes (purple) after Sigloch and Mihalynuk (2017). In this model, the Insular terrane migrates 
from an offshore position during Late Jurassic time and collides far to the south with a north-to-south closure during 
mid-Cretaceous time. Note also the inferred polarity of north Pacific subduction zones in this model (labeled Alaskan 
arcs) and distinctions with subduction polarities in models A and B. Figure modified from Kapp and Gehrels (1998).

2We use the terms suture or suture zone as nongenetic terms for areas showing demonstrable evidence of the closure of a deep ocean basin, regardless of basin size; 
i.e., open ocean versus marginal basin.



et al., 1984). Nonetheless, the evidence 
used to support west-dipping subduction is 
that when North America is restored to its 
mid-Cretaceous position, the Cordilleran 
margin lay east of the deep mantle anoma-
lies. Hence, a west-dipping subduction 
zone provides a simple explanation, albeit 
dependent on these assumptions.

GEOLOGIC OBSERVATIONS 
SUPPORTING EAST-DIPPING 
SUBDUCTION—THE TOP-DOWN 
APPROACH

Here we review the geologic evidence 
for subduction polarity in the northern 
Cordillera using distributions of key  
tectonic elements.

Chugach Accretionary Complex
The Chugach accretionary complex  

is exposed outboard of Early–Middle 
Jurassic plutonic rocks of the Jurassic 
Talkeetna arc built on the northern WCT 
(Fig. 2). It records progressive outboard 
accretion of an ~60–100-km-wide pack-
age of sedimentary/volcanic rocks with 
metamorphic or maximum depositional 
ages that young consistently to the south, 
away from the arc (e.g., Plafker et al., 
1994; Amato et al., 2013). This age pro-
gression matches classic forearc accre-
tionary models with gaps in the record 
compatible with subduction erosion.

The oldest rocks in the accretionary 
complex from north (closest to the arc)  
to south (outboard) are blueschist-facies 
fault-bounded slices of oceanic material, 
with 204–185 Ma crystallization ages 
(e.g., Sisson and Onstott, 1986; Roeske et 
al., 1989). The accretion record is miss-
ing between ca. 185–170 Ma, which cor-
responds to an inboard migration of the 
arc, when subduction erosion destroyed 
part of the forearc (Clift et al., 2005) and 
the forearc basin became well estab-
lished (Stevens Goddard et al., 2018). 
This lack of preservation is cited by 
Sigloch and Mihalynuk (2017) as evi-
dence that the accretionary complex is 
not linked with the Jurassic arc system 
despite the clear evidence globally that 
subduction erosion removes material 
from subduction complexes (e.g., von 
Huene and Scholl, 1991). Continued 
accretion and underplating produced  
(1) a mélange assemblage with maximum 
depositional ages (MDA) of 170–155 Ma; 
(2) blueschists constrained by MDA to 
ca. 135–100 Ma (Day et al., 2016); (3) 

sinistral-oblique south-directed thrusting 
at 125–120 Ma (Labrado et al., 2015);  
(4) a greywacke/conglomerate package 
from 100 to 90 Ma (Amato et al., 2013); 
and (5) turbidites from 90 to 70 Ma 
(Amato et al., 2013). Intermittent accre-
tion continues to the present day.

These data demonstrate a strong  
temporal link between this accretionary 
complex and the adjacent forearc basin 
and arc. When younger strike-slip dis-
placement is restored, this link has led  
to the long-standing interpretation that  
subduction polarity along what is now  
the southern/western margin of Alaska  
to British Columbia and the Pacific 
Northwest has been continuous from ca. 
210 Ma to present. The recent reference  
to this interpretation as a “myth” (Sigloch 
and Mihalynuk, 2017) is perplexing, as  
no other reasonable tectonic scenario has 
been suggested to explain the presence  
of blueschist-facies rocks located in the 
“backstop” of an accretionary complex 
and coeval with an oceanic magmatic  
arc in the adjacent terrane.

Forearc Basin Strata (Cook Inlet–
Matanuska–Wrangell Mountains Basins)

Thick successions of Middle Jurassic 
to Upper Cretaceous siliciclastic strata 
and minor volcanic rocks lie inboard 
(north) of the Chugach accretionary 
complex and outboard (south) of volcanic- 
plutonic belts attributed to arc magma-
tism in south-central Alaska. These 
strata reflect deposition in intra-arc and 
forearc depocenters with respect to the 
Talkeetna-Chitina-Chisana arcs to the 
north (Trop and Ridgway, 2007), and 
sediment was sourced chiefly from these 
arcs (Stevens Goddard et al., 2018). 
Locally, sediment was eroded from 
sources within the Chugach accretionary 
complex starting in early Late Cre-
taceous time. U-Pb detrital zircon data 
show a shared source of magmatic-arc 
sediment for both the forearc basin and 
accretionary complex during the Jurassic 
and Cretaceous, and this Mesozoic  
detrital link between the accretionary 
complex, the forearc basin, and the mag-
matic arc on the upper plate indicates a 
kinship between these different elements 
(Stevens Goddard et al., 2018). Moreover, 
detrital zircon populations from Albian 
and younger strata reflect sedimentary 
linkage with sources in the WCT and 
Intermontane terranes (Reid et al., 2018). 

The spatial configuration of these three 
tectonic elements requires north-dipping 
(present coordinates) subduction beneath 
the outboard margin of WCT (Fig. 2) 
throughout late Mesozoic time.

Magmatic Arc Rocks (Talkeetna-
Chitina-Chisana-Kluane–Coast 
Mountains Arcs)

In southern Alaska, the Jurassic arc  
system built on the WCT is the Peninsular 
terrane, or Talkeetna arc. This arc shows 
a continuous magmatic record from ca.  
200–150 Ma, but magmatism migrated 
northward in time with Early Jurassic 
rocks exposed in an upturned crustal- 
mantle section to the south and an Early 
to Middle Jurassic granitic batholith on 
the north (e.g., Clift et al., 2005; Hacker et 
al., 2011). Although early studies using 
geochemical trends in the batholith 
allowed from south-dipping subduction 
(Reed et al., 1983), those studies failed to 
recognize that the Early Jurassic rocks to 
the south were part of the same arc sys-
tem. Thus, a broader view of geochemical 
trends shows a pattern indicative of north-
ward subduction with mafic rocks to the 
south and more silicic rocks to the north 
and an age trend indicating northward 
migration of the magmatic arc (Clift et al., 
2005; Rioux et al., 2007). This pattern, 
together with age-equivalent accretionary 
complex rocks exposed to the south 
(Amato et al., 2013), leaves virtually no 
doubt that Jurassic subduction was north 
dipping (Fig. 2A).

Middle Jurassic to Late Cretaceous  
plutons and associated volcanic rocks 
intrude and overlie much of the WCT in 
south-central Alaska (Plafker and Berg, 
1994) and continue southward along the 
coast to central British Columbia, where 
they become the western Coast 
Mountains batholith (Gehrels et al., 
2009). A first-order observation con-
cerning the polarity of these arcs is that 
all segments record eastward migration 
of magmatism at ~2 km/m.y. from ca. 
120–80 Ma (Cecil et al., 2018). This rate, 
age, and direction of arc migration are 
also shared by the Sierra Nevada and 
Peninsular Range batholiths, which are 
interpreted to have faced to the west in 
nearly all Cordilleran syntheses. These 
magmatic shifts are consistent with evi-
dence in the accretionary complex for 
subduction erosion and ridge subduction 
(e.g., Amato et al., 2013).



Backarc/Retroarc Basin Strata 
(Kahiltna-Nutzotin-Dezadeash-
Gravina–Tyaughton/Methow Basins)

From Alaska to Washington, a belt of 
Jura-Cretaceous marine assemblages  
separates the WCT from terranes that  
had previously been attached to the conti-
nental margin (Fig. 1). This basin consists 
of an outboard belt that was deposited  
on and derived from the WCT and an 
inboard belt that was deposited on and 
derived from the Intermontane terranes. 
These stratigraphic ties are accepted by 
Sigloch and Mihalynuk (2017), but in 
their interpretation the outboard belt 
formed in the forearc of a west-dipping 
subduction zone located along the inboard 
margin of the WCT (Figs. 1C and 2B).

In south-central Alaska, the Upper 
Jurassic to Upper Cretaceous marine  
clastic strata are referred to as the Kahiltna 
assemblage (K on Fig. 1) (Hults et al., 
2013). Prior to final closure, Kahiltna 
assemblage strata along the southern  
margin of the basin were sourced from 
WCT rocks in a backarc position. Northern 
Kahiltna assemblage strata were sourced 
from the Intermontane terrane in a forearc 
basin position related to north-dipping sub-
duction beneath inboard terranes. Meta-
morphic rocks, mélange, and submarine 
fan strata are all part of the Kahiltna 
assemblage and represent a zone of crustal 
thickening with south-vergent structures 
(e.g., Brennan et al., 2011). Results from 
these studies indicate an inboard- (north-) 
dipping subduction zone along the north-
ern margin of the Kahiltna basin that 
closed during Late Cretaceous time 
(Hampton et al., 2010). In eastern Alaska 
and the Yukon Territory, age-equivalent 
basinal strata belong to the Nutzotin 
Mountains sequence and the Dezadeash 
Formation (N on Fig. 1). Sedimentological 
and detrital data reflect a provenance 
chiefly from Mesozoic arc sources within 
the WCT (e.g., Lowey, 2018).

In southeastern Alaska, age-equivalent 
basinal strata, referred to as the Gravina 
belt, accumulated along the inboard mar-
gin of the Insular terrane and the outboard 
margin of the Intermontane terrane (G on 
Fig. 1) (McClelland et al., 1992). Western 
Gravina strata depositionally overlie and 
were derived chiefly from the WCT to the 
west (Yokelson et al., 2015). In contrast, 
Jurassic–Cretaceous strata of the eastern 
Gravina belt depositionally overlie Middle 
Jurassic or older rocks of inboard terranes 
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and accumulated outboard of the eastern 
Coast Mountains batholith. Western facies 
of the Gravina belt are interpreted to have 
been juxtaposed against eastern facies of 
the Gravina belt by Early Cretaceous sinis-
tral strike-slip followed by mid-Cretaceous 
structural imbrication (Monger et al., 
1994). Nowhere along British Columbia or 
southeast Alaska have direct remnants of 
subduction been observed within the 
basinal strata or along these thrusts.

Farther to the south, eastern facies 
strata of the Gravina belt extend into  
the Tyaughton-Methow basin (M on  
Fig. 1), which also consists of Upper 
Jurassic–Cretaceous marine strata and 
subordinate volcanic rocks. These basins 
are interpreted to record east-dipping 
subduction during Late Jurassic–Early 
Cretaceous time, followed by arrival of 
the Insular terrane along the Cordilleran 
margin during Albian time (e.g., Sur-
pless et al., 2014). These relations sug-
gest that most basin strata formed along 
an east-dipping subduction zone con-
structed on most of the western margin 
of the North American continent. Deep 
exhumation and strike-slip faulting 
obscure details (Figs. 1A and 1B), but 
there is no evidence to support the inter-
pretation of Sigloch and Mihalynuk 
(2017) that these basins formed in a 
west-dipping subduction zone.

Evidence from Northern Alaska
The only part of the northern Cordillera 

that has a clear geologic signal of post-
mid Jurassic outboard (away from conti-
nental margin) subduction is in northern-
most Alaska (e.g., Moore et al., 1994). 
There, in the Brooks Range, structural 
and metamorphic evidence shows sub-
duction of the continental margin beneath 
a Late Jurassic–earliest Cretaceous island 
arc, the Koyukuk terrane (Box and 
Patton, 1989). Fragments of an ocean 
basin were emplaced on the continental 
margin as the Angayucham complex dur-
ing collision at ca. 145–135 Ma (Roeske et 
al., 1989; Lemonnier et al., 2016). Possible 
tectonic connections, if any, between the 
northern and southern Alaska Mesozoic 
arcs are highly uncertain, particularly 
given that this collision occurred prior to 
the opening of the Canada basin when the 
orogen faced north, not south (Figs. 1A 

and 1B). Thus, extrapolating this outward- 
dipping subduction-collision system to all 
of the Cordilleran margin (e.g., Sigloch 
and Mihalynuk, 2017) is not warranted.

Summary of the Geologic Data
The most marked differences in the  

models (Fig. 1) are (1) the inferred polarity 
of subduction zones during Late Jurassic–
Early Cretaceous time; and (2) the nature  
of the suture zone inboard of the WCT.  
The upper-plate geology preserves abundant 
lines of evidence for an east-dipping sub-
duction zone beneath the outboard margin 
of WCT during Jurassic–Late Cretaceous 
time as well as south to north closure of a 
marine basin between the WCT and North 
America along an east-dipping megathrust. 
There is virtually no evidence for west- 
dipping subduction anywhere along the 
inboard margin of the WCT.

DISCUSSION AND CONCLUSIONS

Alternative Explanation of Geophysical 
Observations

Although we have emphasized the geo-
logic record relative to the WCT here, the 
record of east-dipping subduction during 
Late Jurassic through Late Cretaceous 
time is even better established along the 
continental margin of Oregon, California, 
and northwestern Mexico by the Sierra 
Nevada, Great Valley, and Franciscan 
assemblages. Any tectonic model calling 
on west-dipping subduction during this 
time interval must address how these 
iconic tectonic relations have been misin-
terpreted by generations of geologists 
(e.g., Dickinson, 1974). Ribbon continent 
reconstructions of western North 
America (e.g., Johnston, 2008) provide 
alternate views, but represent even more 
glaring contradictions to generations of 
geologic studies (see discussion in Sigloch 
and Mihalynuk, 2017).

It is important to note that there is  
evidence of west-dipping subduction in  
the Cordillera, but it is clearly pre-Late 
Jurassic and does not involve the WCT 
(Monger, 2014). Instead, vast areas that 
comprise the terranes inboard of the WCT 
show evidence of Permo-Triassic ocean 
basin closure along a west-dipping sub-
duction interface that existed until Early–
Middle Jurassic time. Widespread 

ophiolitic rocks associated with the sys-
tem, and their emplacement over rocks 
that were clearly part of the North 
American passive margin from southern 
British Columbia (e.g., Slide Mountain 
terrane; Roback et al., 1994) to Alaska 
(e.g., Seventy Mile terrane; Dusel-Bacon 
et al., 2006), attest to a collision along a 
west-dipping subduction zone. We follow 
Monger (2014) in suggesting that this 
event provides a likely explanation of the 
geophysical observations of Sigloch and 
Mihalynuk (2017). A scenario that incor-
porates these earlier events as an explana-
tion of the tomographic anomalies is pro-
vided in GSA Data Repository Fig. DR13.

Reconciling the Top-Down Record with 
the Bottom-Up Record: Implications for 
Whole-Earth Processes

Reconciling these issues is an impor-
tant problem because it relates to whole-
earth processes of mantle convection and 
past plate motion. We suggest that a chal-
lenge to the broader community is provid-
ing clear tests of the hypothesis that the 
deep anomalies are indeed subduction 
zone remnants, which will require clear 
correlations to the geologic record. 
Conversely, assuming the interpretation 
of the deep anomalies as subducted litho-
sphere is correct, the community must 
develop tectonic models that fit both the 
deep geophysical data and the geologic 
record. Resolving this conflict is a funda-
mental tectonic problem that requires 
integrated analysis between geologists 
and mantle observers/modelers.

The diversity of tectonic models (Fig. 1) 
places the community in a quandary. New 
models based on geophysics can stir debate, 
but these insights must be consistent with 
the geologic record and what the tomogra-
phy data actually show (e.g., Liu, 2014). 
Nonetheless, among a larger group of north-
ern Cordilleran geologists, the evidence 
from surface geology seems overwhelm-
ingly opposed to the tomography-based 
conclusions. How then can we proceed? 
One approach is to assemble working 
groups with broad knowledge that tackle a 
problem by integrating information from a 
wide range of approaches and attempt to 
arrive at a solution that honors all observa-
tions. Alternatively, new insights might 
arise from technological advances (e.g., 

3GSA data repository item 2019259, Figure DR1, showing the tectonic models discussed in the text in a global projection, is online at www.geosociety.org/
datarepository/2019.
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Walker et al., 2019) that require abandoning 
existing hypotheses and exploring funda-
mentally different interpretations.
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