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ABSTRACT
Digital technology advances are rapidly 

altering the landscape of geoscience teaching 
and practice. Although geoscience has readily 
embraced new digital technologies in the past, 
the simultaneous emergence of innovations 
like open online courses and machine learn-
ing toolkits has greatly steepened the learning 
curve for geoscientists of all experience lev-
els. Here, we discuss how these technologies 
are affecting the jobs of geoscience teachers 
and practitioners by highlighting a few tech-
nology-related trends in these areas. We also 
note the potential challenges of this new tech-
nological environment. A holistic view of 
digital technology trends can help geoscien-
tists position themselves for success in a 
future where technological advancements 
will presumably continue to occur at an even 
more rapid pace.

INTRODUCTION
Digital advances have been transforming 

society for several decades, as exemplified 
by the advent and proliferation of prominent 
technologies like personal computers, the 
Internet, and smart phones. In just the past 
few years, there has also been a rapid expan-
sion in cloud computing, high-performance 
computing, the Internet of things, massive 
open online courses (MOOCs), and machine 
learning (ML) (Fig. 1). These simultaneous 
changes have the potential to act as a force 
multiplier, creating even more rapid societal 
change than previous relatively isolated 
advances. Recent progress in artificial intel-
ligence (AI), when coupled with advance-
ments in high-performance computing and 
the proliferation of cloud storage, have 
brought powerful tools that were once acces-
sible to only a few researchers with super-
computers within the grasp of everyday 
software developers. This acceleration in 
society’s digital transformation has the 
potential to change every industry and field 

of study (Frey and Osborne, 2017), including 
geoscience. Here, we synthesize recent trends 
in digital technology applications to geosci-
ence teaching and practice and discuss some 
challenges associated with the dynamically 
changing technological environment.

DIGITAL TRENDS IN GEOSCIENCE 
TEACHING

The digital technology trends in geosci-
ence education can be grouped into two 
themes: (1) new information delivery meth-
ods in the classroom, in the field, and online; 
and (2) updated curriculum content that 
caters to state-of-the-art research and prac-
tice. Virtual field trips and augmented real-
ity tools are increasing student exposure to 
field locations with reduced costs (De Paor, 
2016). MOOCs are providing students with 
cost-effective, flexible education options to 
choose from, thereby competing with the 
classical higher-education campus life model 
(Deming et al., 2018).

The demand for more “digitally fluent” 
graduates has accelerated changes in geosci-
ence curricula. Some schools now offer spe-
cialized computer programming courses and 
workshops, which often include robust sta-
tistical reviews. New majors, minors, and 
certificates, such as geographic information 
system (GIS) or data science, are emerging 
as alternatives to a traditional geoscience 
degree. Employers need graduates who can 
adapt to a quickly changing technological 
landscape. Geoscience educators must focus 
on providing well-rounded and up-to-date 
course content, with expanded opportunities 
to strengthen the technical competencies of 
their students.

DIGITAL TRENDS IN GEOSCIENCE 
PRACTICE

Many practical geoscience disciplines, 
like petroleum exploration, are trying to cap-
italize on improvements in AI and the vast 

quantities of available subsurface data. 
Petroleum geoscientists showed early inter-
est in AI, leveraging their pattern recogni-
tion capabilities to help detect hydrocarbon-
associated anomalies in seismic data 
(Widrow et al., 1994) and define facies based 
on log patterns (Neri, 1997). Broader adop-
tion of AI technologies has only recently 
accelerated, in part due to university partner-
ships to tackle key technical challenges, 
business alignments with tech companies, 
and competitive crowd-sourcing to supple-
ment in-house research and development.

Most of the ML applications in petroleum 
geoscience have focused on seismic inter-
pretation. Seismic interpretation software 
packages have historically provided semi-
automated tools like signal auto-trackers or 
interpolation and gridding routines. Newer 
approaches are utilizing ML to interpret 
faults (Zheng et al., 2014), define salt bound-
aries (Di et al., 2018), or delineate geobodies 
based on labeling routines (Alaudah and Al 
Regib, 2016). With the growing popularity 
of neural network solutions and access to 
high-performance computing resources, 
advances in image segmentation and classi-
fication routines are now setting the stage 
for interpretation as a full-volume machine-
assisted analysis.

CHALLENGES AND CAUTIONS
The incorporation of computational geo-

science skills into academic curricula 
remains a major challenge. Additional 
resources are needed to train existing fac-
ulty in the newest technology and/or hire 
new faculty whose research uses emerging 
technologies. Advocating for the inclusion 
of rigorous computational geoscience 
courses that include programming ele-
ments, beginning in the undergraduate 
curriculum, seems imperative.

While online education has many advan-
tages, one drawback is the potential loss of 
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future students who become exposed to the 
geosciences through on-campus classes. 
General education geoscience courses, taught 
by passionate faculty and often supplemented 
with field trips, are an important tool to recruit 
new geoscience students. We think it is 
important that universities not lose their 
emphasis on field and lab work or their com-
mitment to undergraduate research. These 
unique, high-impact learning experiences can 
only happen in person and are essential to 
mentoring students in our discipline.

Another point of caution is the potential 
erosion of key geoscience skills from an 
over-reliance on digital technology. This has 
been recognized as a potential risk in petro-
leum geology for more than a decade 
(Yeilding, 2005), as subsurface interpreters 
began to rely heavily on workstation-pro-
duced maps that often provide geologically 
unrealistic solutions. If virtual field trips and 
digital map-making become students’ pri-
mary exposure to geologic mapping, the 
problem may grow even worse.

ML applications in geoscience present 
some unique challenges. Insufficient train-
ing data and poor experimental designs can 
lead to erroneous conclusions. Open-source 

data or black box algorithms used in an anal-
ysis may be of questionable quality. Until 
skilled geoscientists can “crack” the codes 
and truly understand algorithm mechanics 
and limitations, this problem will remain. In 
response, a growing number of journals are 
reinforcing new best practices, such as pub-
lishing codes and raw data. We assert that it 
is the role of the geoscience community to 
establish standard techniques and other best 
practices to solidify the correct use of popu-
lar new technologies.

CONCLUSIONS
The geoscientists that are most likely to 

thrive in this new technological environment 
are those willing to be agile and remain in a 
state of continuous learning. Maintaining 
static methods of teaching and practice will 
be insufficient. Paradoxically, despite the 
need for digital comprehension and capabil-
ity, the most important functional knowledge 
and skills that any geoscientist should pos-
sess will likely remain the same. These 
include a deep understanding of fundamen-
tal Earth processes, an ability to creatively 
integrate data from various sources, the clar-
ity to communicate difficult concepts, and a 

passion for their work. Technological dexter-
ity will certainly bring additional value to 
our field, but we believe it will be the combi-
nation of deep fundamental geoscience 
knowledge and digital fluency that will be 
the foundation for the next era of geoscience 
innovation and discovery.
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