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ABSTRACT

During the Phanerozoic Eon, the
mineralogies of nonskeletal marine
cements and oolites have oscillated on
a 100-200 m.y. scale between aragonite
+ high-Mg calcite (aragonite seas) and
low-Mg calcite (calcite seas). Oscilla-
tions in the carbonate mineralogy of
dominant reef-building and sediment-
producing organisms are in harmony
with the oscillations for nonskeletal
carbonates. These oscillations, together
with synchronous oscillations in the
mineralogy of marine potash evapor-
ites, can be explained by secular varia-
tion in the Mg/Ca ratio of seawater
driven by changes in the spreading rates
along midocean ridges. The temporal
patterns for biocalcification have come
to light through a focus on (1) simple
taxa that exert relatively weak control
over the milieu in which they secrete
their skeletons, and (2) taxa that hyper-
calcify—i.e., secrete massive skeletons
or are exceptionally productive, for
example, in forming voluminous chalk
deposits. Most major reef-building and
sediment-producing taxa belong to both
of these categories. It appears that the
Mg/Ca ratio of seawater has not only
controlled Phanerozoic oscillations in
hypercalcification by simple taxa, such
as calcareous nannoplankton, sponges,
and bryozoans, but has strongly influ-
enced their skeletal evolution.

INTRODUCTION

Following an era of specialization
in the earth sciences, many conceptual
advances are now emerging through inter-
disciplinary research. The flow of earth
materials through chemical cycles, for
example, links diverse scientific fields, as
do sequences of causal relationships that
connect noncyclical physical, chemical,
and biological phenomena. We have con-
cluded that Phanerozoic oscillations in the

An aragonitic brain coral, Diploria strigosa, of late Pleistocene age, from the Cockburn Town
fossil coral reef, San Salvador Island, Bahamas. This reef formed during the most
recent interval of aragontie seas. Photo by Al Curran, Smith College.

Figure 1. Effect of changes in the rate of seafloor spreading (ocean crust production) on global sea
level, the flux of MOR hydrothermal brine, and the chemistry of seawater as predicted by Spencer and
Hardie (1990) and Hardie (1996). A—high-spreading-rate conditions; B—low-spreading-rate conditions.
Red arrows—MOR brine paths (thicknesses of the arrows are proportional to the brine flux but not to
scale). Gray arrows proportional to spreading rates (not to scale).

mineralogy of dominant reef-building and
sediment-producing organisms can be
linked to shifts in seawater chemistry
controlled by changes in global spreading
rates along mid-ocean ridges (Fig. 1).

In a seminal study of oolites and early
marine cements, Sandberg (1983) showed
that nonskeletal carbonate precipitation
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in Phanerozoic seas has oscillated between
aragonite and calcite (Fig. 2). It has been
widely held that relatively low levels of
atmospheric pCO, have produced “arago-
nite seas,” while relatively high levels have
produced “calcite seas” (Wilkinson and
Algeo, 1989; Mackenzie and Morse, 1992).
Calculations using the computer program
PHRQPITZ (Plummer et al., 1988) show,
however, that pCO, is not a viable control
(Stanley and Hardie, 1998). Seawater of
modern composition would be supersatu-
rated with respect to calcite and undersat-
urated with respect to aragonite only for

a narrow range of pCO,, within which all
values are more than an order of magni-
tude greater than that of the present—a
level almost certainly not attained during
the Cretaceous interval of calcite seas
(Berner, 1994). In fact, such high levels

of pCO, would cause aragonitic shells of
organisms to begin dissolving immediately
after their secretion. Furthermore, experi-
ments show that for present-day seawater
at 25 °C (Mg/Ca mole ratio = 5.17), raising
pCO, from 1045 to 10-10 atm simply low-
ers the MgCO; content of precipitated cal-
cite from 12 to 7 mol% (Burton and Wal-
ter, 1991); it does not cause

low-magnesium calcite to precipitate
instead of aragonite.

It has long been recognized that
changes in the Mg/Ca ratio of seawater
can dictate whether calcite or aragonite
precipitates from seawater. Experiments
demonstrating this relationship (Fticht-
bauer and Hardie, 1976, 1980), which are
in accord with data for natural saline lakes
(Muller et al., 1972), indicate that, at 25 °C
and present seawater ionic strength and
atmospheric pCO,, a ratio for Mg/Ca of
~2 separates a regime of calcite precipita-
tion from a regime of aragonite + high-Mg
calcite precipitation (Fig. 3).

Spencer and Hardie (1990) introduced
a quantitative model for calculating the
chemistry of ancient seawater based on
the premise that the composition of mod-
ern seawater results primarily from the
mixing of average riverwater (a Ca-HCO3
water) and mid-ocean ridge (MOR)
hydrothermal brines (Na-Ca-Cl waters).
This model predicts that relatively minor
changes in the flux of MOR hydrothermal
brines would change the Mg/Ca, Na/K,
and CI/SO, ratios in seawater enough to
drastically alter the primary mineralogy
of nonskeletal marine carbonates and
evaporites.
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Mid-ocean ridges act as huge rock-
fluid ion exchange systems for Ca2* and
Mg2*, Ca2* being released to the fluid and
Mg?* being consumed by the rock in the
conversion of oceanic basalts to green-
stones and amphibolites by interaction
with hot seawater (Fig. 1). Low spreading
rates (= low hydrothermal brine fluxes;
Baker et al., 1995) should lead to elevated
Mg/Ca mole ratios in seawater of the open
oceans; if this ratio rose above ~2 for
warm surface seawater, then aragonite +
high-Mg calcite would precipitate instead
of low-Mg calcite (Fig. 2), as occurs in
today’s oceans. Conversely, high spreading
rates (= high hydrothermal brine fluxes;
Baker et al., 1995) should lower the
Mg/Ca mole ratio in seawater; if this ratio
dropped below ~2, then low-Mg calcite
would precipitate instead of aragonite +
high-Mg calcite (as predicted, for example,
for the Cretaceous Period; Fig. 2). Using

first-order sea-level curves as a proxy for
the record of ocean crust production dur-
ing the Phanerozoic Eon, Hardie (1996)
employed the Spencer-Hardie model to
predict the mineralogies of nonskeletal
marine carbonate ooids and cements as a
function of secular changes in the Mg/Ca
ratio of seawater. The results are in close
agreement with Sandberg’s (1983) periods
of aragonite seas and calcite seas, as shown
in Figure 2 (see also Hardie, 1996, Fig. 5).
Potash evaporites in the geological
record fall into two main chemical groups:
(1) KClI evaporites characterized by potas-
sium chloride salts such as sylvite (KCI)
and an absence of magnesium sulfate salts,
and (2) MgSO, evaporites characterized by
magnesium sulfate salts such as kieserite
(MgSO, - H,0) (Hardie, 1996). These two
evaporite types precipitate from two very
different parent brines, Na-Ca-Mg-K-ClI
brines (“calcium chloride” brines) and

Na-Mg-K-CI-SO4 brines, respectively,
which lie on either side of a fundamental
chemical divide, the “CaSO, divide”
(Hardie and Eugster, 1970). Because both
Mg2* and SO/ are extracted from seawa-
ter at mid-ocean ridges, whereas Ca2* and
K* are released, MOR hydrothermal brines
are of the calcium chloride type. There-
fore, during periods of high spreading
rates, the elevated fluxes of MOR brine
will drive seawater toward a calcium chlo-
ride composition that on evaporative con-
centration would produce KCI evaporites.
On the other hand, low spreading rates
would push seawater toward MgSO,-
enriched composition and precipitation
of MgSO,-type evaporites. Calculations
based on the Spencer-Hardie model pre-
dict that KCI evaporites should have pre-
cipitated from calcite seas and MgSO,

Hypercalcification continued on p. 4
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Hypercalcification continued from p. 3

evaporites from aragonite seas. The rock
record confirms this correspondence
(Fig. 2; see also Hardie, 1996, Fig. 5). The
fact that the Spencer-Hardie and Hardie
models successfully predict the Phanero-
zoic history of two different families of
nonskeletal minerals precipitated from
seawater—carbonates and potash evap-
orites—makes a strong case that both
models are fundamentally valid.

STRATEGIES FOR UNCOVERING
TRENDS IN BIOMINERALIZATION

From sparse data, Wilkinson (1979)
proposed a unidirectional Phanerozoic
trend from calcite to aragonite for the

dominant mineralogy of marine biocalci-
fiers. Although such a trend has not been
apparent to more recent workers (Lowen-
stam and Weiner, 1989, p. 237), Wilkin-
son’s data led Mackenzie and Agegian
(1989, p. 20) to conclude that “the oscilla-
tory trend seen in non-skeletal carbonate
components ... is not clearly apparent
in the mineralogy of fossil organisms.”
Wilkinson’s data also dissuaded Van de
Poel and Schlager (1994) from claiming
such a correspondence, although their sur-
vey of bioclasts in Mesozoic and Cenozoic
carbonate rocks indicated maxima for
aragonitic components in Triassic and
late Cenozoic strata.

Rather than conducting a general sur-
vey, we adopted a double strategy to inves-

Figure 2. Correspondence between secular oscillations for the carbonate mineralogy of dominant
hypercalcifying marine taxa, the mineralogy of marine evaporites and nonskeletal carbonates, and the
Mg/Ca ratio and absolute concentration of calcium (Ca) in seawater as calculated by Hardie (1996). The
boundary separating the nonskeletal nucleation fields of low-magnesium calcite (< 4 mol% MgCOy),
which we will term calcite, and high-Mg calcite (> 4 mol% MgCO3) and aragonite is shown as a hori-
zontal line at Mg/Ca = 2 (after Stanley and Hardie, 1998).

tigate the effects of seawater chemistry
on biocalcification (Stanley and Hardie,
1998). First, we focused on what we call
hypercalcifying tropical taxa. Forming one
subset of this group are species that have
secreted unusually massive skeletons for
the higher taxa to which they belong;
stony bryozoans of the Paleozoic are an
example. A second, overlapping subset
of hypercalcifiers includes species whose
populations engage in rampant carbonate
production. Reef builders and major sedi-
ment producers fall within this category.

As a second strategy, we hypothesized
that relatively unsophisticated carbonate
secretors—ones that exert weak control
over the chemical milieu in which they
secrete their skeletons—are strongly influ-
enced by the Mg/Ca ratio and temperature
of seawater. Significant here is the obser-
vation that magnesium increases with
temperature in the skeletons of modern
marine organisms, as in nonskeletal
marine carbonates, but partition coeffi-
cients vary among taxa and the effect of
temperature is inversely related to biologi-
cal complexity (Chave, 1954).

Employing these two strategies,
we uncovered a strong correspondence
between the mineralogy of biologically
simple hypercalcifying taxa and that of
nonskeletal carbonates from Ordovician
time to the present (Fig. 2). We conclude
that although these taxa, including reef
builders, need not have secreted skeletons
that were in thermodynamic equilibrium
with seawater, their skeletal productivity
has been strongly influenced by the ambi-
ent Mg/Ca ratio. The taxa that yield this
pattern share one deficiency: they are
unable to remodel their skeletons through
resorption during their ontogeny. It appears
that the inability to remodel is linked to
unsophisticated modes of biocalcification
that also result in reliance on favorable
seawater chemistry. Foraminifera, though
otherwise simple organisms, are sophisti-
cated skeletal secretors, which employ an
“almost unparalleled” variety of basic
modes of mineralization (Lowenstam and
Weiner, 1989, p. 670) and also have the
ability to remodel their tests; there is no
apparent overall temporal relationship
between their predominant mineralogy
and the Mg/Ca ratio of seawater. Reef
builders are probably heavily influenced
by the ambient Mg/Ca ratio for two rea-
sons. First, they must meet the basic
demands of hypercalcification. Second,
nearly all organisms able to flourish in the
severe competitive battle for space within
reef-building communities have succeeded
through vegetative or colonial growth.
Thus, these organisms have characteristi-
cally been simple forms, such as algae,
sponges, and corals, which are unsophisti-
cated carbonate secretors.

As described below, application of our
strategies to the geologic record provides
explanations for many previously puzzling
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Figure 3. Experimentally determined nucleation
fields of low-Mg calcite (red), high-Mg calcite +
aragonite (blue), and aragonite (green) in MgCl,-
CaCl,-Na,CO3-H,O0 solutions at 28 °C, atmo-
spheric pCO, and 1 atm total pressure (1976
unpublished data of Fiichtbauer and Hardie).

Red symbol—calcite with MgCO; content up

to 4 mol%; half-solid red square—calcite with
MgCO; content >4, <6 mol%. MgCO; content of
high-Mg calcite in the blue symbol field increases
systematically with increase in the Mg/Ca ratio in
the aqueous solution (see Fiichtbauer and Hardie,
1976, 1980). Black star—modern seawater (SW).

phenomena in the history of reef building
and sediment production and in the evo-
lution of calcareous taxa.

DOMINANT REEF BUILDERS

Before Late Ordovician time, reefs
were built by taxonomically problematical
taxa of uncertain mineralogy. For this rea-
son, we began our analysis of the mineral-
ogy of reef builders with the reef commu-
nity that flourished from Late Ordovician
to Late Devonian time in the calcite sea
designated Calcite | (Fig. 2). In accordance
with our hypothesis, this community was
dominated by calcitic taxa: stromato-
poroid sponges and several groups of
calcitic corals (Oliver and Coates, 1987).

The Late Devonian mass extinction
decimated the calcitic reef community.
Late in the Mississippian Period, the
Mg/Ca ratio of seawater shifted far into
the aragonitic regime (Aragonite I1), and
new reef-building communities of arago-
nite and high-Mg calcitic algae and
sponges emerged (Fig. 2). Members of
these communities formed the enormous
Horseshoe Atoll of central Texas and the
Permian reef complex of west Texas. Arag-
onitic members of the same and similar
taxa emerged as the reef-building com-
munity of the Middle Triassic, and in Late
Triassic time aragonitic corals of the mod-

ern type (scleractinians) joined them as
dominant reef builders (Stanley, 1988).

The only discrepancy between the
mineralogy of dominant reef builders and
that of nonskeletal carbonates is for Late
Jurassic and Early Cretaceous time, when
scleractinian corals persisted as major reef
builders. The continued success of this
aragonitic group probably resulted from
two circumstances. First, the Mg/Ca ratio
remained near the calcite-aragonite
boundary during this interval. Second,
the high absolute concentration of Ca%*
during this interval may have promoted
nonequilibrium precipitation of all forms
of calcium carbonate. In mid-Cretaceous
time, when the Mg/Ca ratio descended to
its lowest Phanerozoic level according to
the calculations of Hardie (1996), corals
relinquished to rudists their role as domi-
nant reef builders (Scott, 1984). As bivalve
mollusks, rudists were probably not
strongly influenced by seawater chemistry.
Thus, although shells of radiolitids, the
most successful reef-building rudists of the
Late Cretaceous, contained more calcite
than aragonite (Kauffman and Johnson,
1988), it is most reasonable to view the
rudists as beneficiaries of the decline
of aragonitic reef-building corals that
occurred when the Mg/Ca ratio dropped.
Support for this interpretation comes from
the previously unexplained failure of
corals to build large reefs for more than
30 m.y. after the disappearance of the rud-
ists at the end of the Cretaceous Period.
Scleractinian corals existed in considerable
diversity early in the Cenozoic Era, but
produced only small, inconspicuous bio-
herms, even during the extremely warm
Eocene interval. Not until early in the
Oligocene did corals begin to produce
massive reefs throughout the world (Frost,
1977), despite the fact that warm seas had
contracted toward the equator (Zachos
et al., 1994). At this time, the Mg/Ca ratio
of seawater was rising far into the arago-
nitic regime (Fig. 2).

We have provided elsewhere a more
detailed picture of the correspondence
between the mineralogy of major reef
builders and nonskeletal marine carbon-
ates (Stanley and Hardie, 1998). Aspects of
the pattern we have described were noted
by Van de Poel and Schlager (1994) and
Hallock (1997).

DOMINANT SEDIMENT
PRODUCERS

The widespread deposition of massive
chalk during Late Cretaceous time is
another phenomenon of hypercalcifica-
tion that has long defied explanation but
can be accounted for by a change in sea-
water chemistry: it coincided with the
interval during which the Mg/Ca ratio was
at its lowest level during the past 500 m.y.
(Fig. 2). Calcareous nannoplankton—
potential chalk producers—had attained

high taxonomic diversity during Early
Cretaceous time but had failed to form
massive chalk deposits. Following the set-
back of calcareous nannoplankton by the
terminal Cretaceous extinction, massive
chalk deposition resumed in early Pale-
ocene time. Then, as the Mg/Ca ratio

of seawater rose toward the aragonitic
domain, widespread deposition of massive
chalk ceased, and it failed to resume even
during the exceptionally warm Eocene
interval, when epicontinental seas were
widespread.

The attribution of extensive chalk
deposition to changes in seawater chem-
istry gains support from the observation
that an increase in the concentration of
dissolved Ca2* enhances calcification by
calcareous nannoplankton in the labora-
tory (Blackwelder et al., 1976). Additional
support comes from two puzzling tempo-
ral patterns for coccoliths (Houghton,
1991). One of these is a polyphyletic
decline in the mean size of coccoliths
during the Cenozoic Era. The result was
thinner calcitic encrustation of cells.

The second pattern pertains to the genus
Discoaster. Coccoliths of this genus were
solid, circular shields early in the Ceno-
zoic, but as the era progressed, they be-
came increasingly diminished in volume
by marginal embayments. By the time
Discoaster became extinct in the Pliocene,
all of its members secreted spindly, star-
shaped coccoliths that covered only a
small fraction of the cell surface (Fig. 4).
These trends for coccoliths can be viewed
as amounting to evolutionary osteoporosis,
caused by an increase in the Mg/Ca ratio
of seawater that was accompanied by a de-
cline in the concentration of Ca2* (Fig. 2).

The Mg/Ca model also provides an
explanation for patterns of hypercalcifica-
tion for green algae. Aragonitic codiaceans
(especially Halimeda) produce vast quanti-
ties of carbonate sediment today, and
dasycladaceans were so productive during
Aragonite Il that they have been regarded
as the Halimeda of the Triassic (Elliott,
1984). On the other hand, the massive,
calcitic receptaculitids were significant
sediment producers throughout Calcite I.

EVOLUTIONARY TRENDS

The Cenozoic evolutionary trend
toward weakly calcified nannoplankton
species appears to reflect the influence
of seawater chemistry (Fig. 4). Among
cheilostome bryozoans, changes in the
Mg/Ca ratio appear to have influenced
the evolution of skeletal mineralogy. The
cheilostomes originated as a calcitic group
during the Cretaceous Period (Calcite I1),
although a few species of one subgroup
secreted a combination of calcite and arag-
onite (Boardman and Cheetham, 1987).
Fully aragonitic species did not arise until

Hypercalcification continued on p. 6
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Hypercalcification continued from p. 5

the Eocene Epoch, when the Mg/Ca ratio
of seawater had risen markedly. Today
most cheilostome species secrete high-Mg
calcite, but many tropical species secrete
aragonite (Rucker and Carver, 1969); this
distribution corresponds to the tempera-
ture pattern for nonskeletal precipitation
of carbonates in laboratory experiments
(Morse et al., 1997).

Several workers have noted that the
mineralogy of calcareous sponges has fre-
quently coincided with that of nonskeletal
carbonates during the Phanerozoic (Reit-
ner, 1987; Gautret and Cuif, 1989; Wood,
1991). Our survey suggests that calcareous
sponges have in fact been at the mercy of
seawater chemistry throughout their his-
tory (Fig. 2). During the Cretaceous, for
example, all of them appear to have been
calcitic, but all present-day representatives
secrete aragonite, high-Mg calcite, or a
combination of these minerals (Hartman,
1980).

Martin (1995) has noted that some
suborders of foraminifera originated with
skeletal mineralogies corresponding to
those of nonskeletal carbonates, although,
as we have already noted, there does not
appear to be a strong temporal correlation
between the Mg/Ca ratio of seawater and
the mineralogy of highly productive
foraminifera.

DISCUSSION

The fact that we have been able to
connect many previously problematical
phenomena with a single causal explana-
tion gives credence to the Mg/Ca model.
The results have additional biologic and
geologic implications, some of which sug-

gest promising avenues for future research.

For many taxa, degree of ecologic
stability exhibited over tens or hundreds
of millions of years seems to reflect the
degree to which seawater chemistry has
influenced skeletal mineralogy. Sophisti-
cated carbonate secretors have the poten-
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Discoaster, a genus

of calcareous nanno-
plankton whose calcitic
skeletal elements
underwent a striking
net evolutionary trend
during the sharp
Cenozoic rise in the
Mg/Ca ratio of sea-
water. Species with
heavy, shield-shaped
coccoliths gave

way to species with
delicate, star-shaped
coccoliths. (Modified
from Houghton,
1991.)
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tial to optimize their skeletal structures
without inhibition by the Mg/Ca ratio of
seawater. Ammonoids, which secreted thin
shells within which the gas pressure was
about 1 atm, must have been served well
by the relatively great bending strength
of their nacreous aragonite. Ammonoids
should therefore have benefited from their
ability to secrete aragonite readily even in
calcite seas. Thus, although being rela-
tively independent of the ambient Mg/Ca
ratio leaves a taxon such as the Ammo-
noidea unable to benefit from a favorable
ratio, all else being equal, this indepen-
dence confers long-term ecologic stability.
Conversely, although unsophisticated car-
bonate secretors, such as algae, sponges,
and corals, automatically benefit from the
presence of a favorable Mg/Ca ratio, these
forms also suffer severe declines when

the ratio shifts to an unfavorable domain;
they tend to follow a “boom-or-bust”
pattern of productivity—and perhaps also
taxonomic diversity—in the course of
geologic time.

We think it likely that the Mg con-
centration in skeletons of taxa that secrete
high-Mg calcite has been positively corre-
lated with the Mg/Ca ratio of seawater
back through Phanerozoic time, just as
today the Mg concentration in calcite
skeletons increases with increasing ocean
temperature (Chave, 1954). Experimental
growth of modern species under varying
ambient Mg and Ca concentrations could
shed light on this possibility by demon-
strating lability in skeletal mineralogy for
individual organisms. Study of the abun-
dance of exsolved microdolomite and of
trace elements in fossils may also expand
our knowledge of skeletal Mg concentra-
tions for extinct taxa.

Changes in carbonate productivity
resulting from shifts in the Mg/Ca ratio
of seawater must have affected the carbon
cycle significantly in the course of geo-
logic time. Today, a large proportion of
carbonate and bicarbonate ions entering
the ocean are incorporated into organic

reefs. If, long after forming, reef carbonate
becomes metamorphosed during orogene-
sis, it will release CO, to the atmosphere
(Berner, 1994). The flux of oxidized carbon
to reef carbonate reservoirs would have
been reduced at times, such as the early
Cenozoic, when an unfavorable Mg/Ca
ratio suppressed reef building. Carbonate
storage in reefs increased dramatically
early in Oligocene time, following the
shift from calcite to aragonite seas. At
about the same time, through reduced
productivity during the dramatic rise in
the Mg/Ca ratio of seawater, nannoplank-
ton began contributing progressively less
carbonate to the deep sea for possible
future subduction and release of CO,.
Thus, during the past 30 m.y. or so, the
increasing Mg/Ca ratio of seawater has
influenced the relative proportions of total
carbonate that have accumulated in the
deep sea and in shallow-water reefs, where
the mean residence time for oxidized
carbon is much longer.
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