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ABSTRACT

Fractal behavior implies power-
law, scale-invariant statistics; these
statistics are applicable to a wide
variety of geological problems.
Although topography is often com-
plex, statistically, it usually exhibits
fractal behavior; drainage networks
are a classic example of a fractal tree.
High stands and low stands in reser-
voirs have been demonstrated to
obey fractal, power law statistics;
there is also evidence that peak river
discharges during floods obey fractal
statistics. Floods are responsible for
the deposition of some sedimentary
sequences; sedimentary layering
under a variety of circumstances sat-
isfies fractal statistics.

INTRODUCTION

The subjects of hydrology, geo-
morphology, sedimentology, and stra-
tigraphy are interrelated. Landforms
are created by tectonic processes but
are destroyed by erosion; sediment
erosion and deposition are primarily
responsible for the surface morphology
of the continents. Erosion is dominated
by floods, but it is a subject of contro-
versy whether erosion is dominated by
the very largest floods or a characteris-
tic flood, say the 10 year or 100 year
flood. Erosional processes are respon-
sible for the development of drainage
networks, which in turn dominate the
development and evolution of land-
forms. The deposition of sediments
is responsible for the development
of stratigraphic sequences. These
sequences may contain a wealth of
information on paleoweather and
climate if they can be interpreted.

It is easy to argue that the coupled
processes of rainfall, runoff, erosion,
material transport, and deposition are
so complex as to defy analysis. Yet it
must be recognized that there is con-
siderable order in this complexity;
fractal statistics are widely applicable.
Self-similar fractals are defined by the
relation

log (Ny/Nn.1)
log (m41/rn)

where D is the fractal dimension, N

is the number of objects with a linear
dimension r, and C is a constant of
proportionality. The concept of fractals
was introduced by Mandelbrot (1967)
in terms of the length of the west coast
of Great Britain. His result is given in
Figure 1A; the measured length P of the
coast line is given as a function of the
length r of the measuring rod. Good
agreement with the fractal relation

P=Nr=Cyrl-D (2)

is found taking D = 1.25. Similar results
are obtained for the length of contours
on topographic maps; three examples
are also given in Figure 1 for diverse
geologic settings. It is seen that there
is little variation in the fractal dimen-
sion (1.15-1.25); the fractal dimension
of topography is not sensitive to the
geologic setting and is not diagnostic
of age.

The height of topography along
a linear track is equivalent to a time
series;. It is common practice to ex-

N=CirPorD= 0))

1Editor’s note: For those readers who are, as I am,
mathematically deprived, a Fourier series can be
used to approximate a complex curve by addition
of a number of sine and cosine waves of different
wavelength (A;) and amplitude (Ap).

—E. M. Moores

Erosional drainage
pattern in the
southern Basin
and Range region,
western United
States (courtesy

of Arthur Bloom,
Cornell University).

pand a time series in a Fourier series
over the interval L; the coefficients in
the Fourier series A, correspond to the
wave length A, = 2n/ky, with ky, the
wave number. The spectral power
density of a time series is given by

Sn = AZL. A time series is a self-affine
fractal if (Turcotte, 1992)

Sn=C2kB or Ay=C3AP72 3

The corresponding self-affine fractal
dimension is given by D = 1/5(5 - B).
Spherical harmonic expansions of
the topography on a planet are equiva-
lent to the Fourier expansion of a time
series. Spherical harmonic expansions
of the global topography of Earth
(Rapp, 1989) and Venus are given
in Figure 2. In both cases, good agree-
ment with equation 3 is obtained tak-
ing B = 2(D = 1.5); this is equivalent
to the result A, = C3 Ay. In the spectral
domain, mountains have the same
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height to width ratios independent
of size.

From Figure 2 it is seen that the
amplitude of the topography on Venus,
Ay, is about a factor of four less than on
Earth; but on both planets the topogra-
phy has the same spectral dependence
B = 2. This is somewhat surprising be-
cause erosion is dominant in the evolu-
tion of many landforms on Earth; ero-
sion is virtually absent on Venus,
so that tectonic processes are domi-
nant. This suggests that the tectonic
processes that build topography and
the erosional processes that destroy
topography both give the same statisti-
cal behavior. Once again, the fractal
dimension of topography does not
appear to be diagnostic. It should also
be pointed out that the fractal dimen-
sions of topography associated with
self-affine spectral expansions and
self-similar coastline lengths are not,
in general, equal. However, under a
wide variety of conditions, topography
does obey fractal statistics to a good
approximation.

Drainage networks are classic
examples of fractal trees. It is standard
practice in geomorphology to use the
Strahler (1957) ordering system. When
two like-order streams meet, they form
a stream with one higher order than
the original. Thus, two first-order
streams combine to form a second-
order stream, two second-order streams
combine to form a third-order stream,
and so forth. The bifurcation ratio R, is
defined by

Np
Nn+]

where Ny, is the number of streams of
order n. The length-order ratio R, is
defined by

Rp =

4)

T
RI= n+1
In

’ (5)

where ry, is the mean length of streams
of order n. From equation 1 the fractal
dimension of a drainage network is
(La Barbera and Rosso, 1989)

In Ry
InR °

Horton's (1945) laws require that Ry
and R be nearly constant for a range of
stream orders in a drainage basin; thus,
drainage networks were recognized as

D= (6)
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Figure 1. A: Length P of the west coast of Great Britain as a function of the length r of the
measuring rod. B-D: Lengths P of specified topographic contours in several mountain belts as a
function of the length r of the measuring rod; B: 3000 ft contour of the Cobblestone Mountain
quadrangle, Transverse Ranges, California; C: 10,000 ft contour of the Byers Peak quadrangle,
Rocky Mountains, Colorado; D: 1000 ft contour of the Silver Bay quadrangle, Adirondack Moun-
tains, New York. Correlations are with the fractal relation shown in equation 2.
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being fractal 20 years before the con-
cept of fractals was defined.

Important aspects of surface mor-
phology obey fractal statistics; but the
nagging question is, Why? Are the
processes that create landforms scale
invariant and the only scale-invariant
statistics fractal? Or are the underlying
processes in a class that generates frac-
tal statistics?

FLOOD STATISTICS

An important question in geomor-
phology concerns which floods domi-
nate erosion. Is erosion dominated by
the 10-year, the 100-year, or the very
largest floods? The answer to this ques-
tion depends upon whether extreme
flood probabilities have a logarithmic
or power-law dependence on time.
The peak river discharge V during a
flood is a measure of its intensity. If
floods have a logarithmic dependence
on time, the peak discharge V during
the most severe flood in a time interval
T depends on T according to

V=Cy4 log T + Cs.

If floods have a power-law (fractal)
dependence on the interval, then we
have

V=CgTH.

)

®

With the logarithmic dependence, ex-
treme floods are much less likely to
occur than with the power-law depen-
dence. Thus, the more frequent, inter-
mediate-size floods will carry the bulk
of the eroded sediments rather than
the rare extremely large flood. With

a power-law dependence, the very
largest floods are generally responsible
for the bulk of sediment transport.
Flood-frequency statistics also have

a variety of other implications; land-
use regulations and flood control pro-
jects are based on extrapolations for
future floods.

Records of the peak flood dis-~
charges are generally available for a
relatively short period of time; typically
50 to 100 years in the United States.
The objective of flood-frequency analy-
sis is to extrapolate the historical record
to longer periods of time. A wide vari-
ety of statistical distributions have been
utilized for this purpose; Turcotte and
Greene (1993) have suggested the
applicability of the fractal relation in
equation 8. The fractal distzibution can
also be expressed in terms of the ratio
F of the peak discharge over a 10-year
interval to the peak discharge over a
one-year interval. With self-similarity,
the parameter F is then also the ratio
of the 100-year peak discharge to the
10-year peak discharge and the 1000-
year peak discharge to the 100-year
peak discharge. The parameters H and
F can be related by

F=10H, ©

We refer to the parameter F as the flood
intensity factor.

As two specific examples we con-
sider station 1-1805 on the Middle
Branch of the Westfield River in Goss
Heights, Massachusetts, for the period
1911-1960 and station 11-0980 in the
Arroyo Seco near Pasadena, California,
for the period 1914-1965. These sta-
tions were chosen because they were
two of the ten stations used as bench-
marks by Benson (1968), who applied
a variety of geostatistical distributions
to flood-frequency forecasting. Floods
are considered independent only if the
peak flows are separated by more than
one month. For a 50-year record, the
50 largest values of Vp, are ordered, the
largest Vi, is assigned a period T = 50
yr, the second largest flood a period T
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Figure 2. Power spectral density, S, as a function of wave number, k, for spherical harmonic expansions of topography (degree#) for Earth (A) and
Venus (B). Correlations are with equation 3, taking § = 2.

=50/2 = 25 yr, the third largest flood a
period T = 50/3 = 16.7 yr, and so forth.
The results for the two stations are
given in Figure 3.

For station 1-1805 the fractal fit (F)
gives H=0.51 and F = 3.3. For station
11-0980 the fractal fit gives H = 0.87
and F = 7.4. Also included in Figure 3
are the six statistical correlations given
by Benson (1968): the two-parameter
gamma (Ga), Gumbel (Gu), log Gumbel
(LGu), log normal (LN), Hazen (H), and
log Pearson type III (LP). For large
floods the fractal predictions (F) corre-
late best with the log Gumbel (LGu),
while the other statistical techniques
predict longer recurrence time for very
serious floods. The fractal and log
Gumbel are essentially power-law cor-
relations, whereas the others are essen-
tially logarithmic. The log Pearson type
III (LP) is the federally approved distri-
bution for evaluating the flood hazard
in the United States. For station 1-1805
the 100 year flood predicted by the
fractal correlation is a factor of 1.6
greater than the 100 year flood pre-
dicted by the log Pearson type III corre-
lation. For station 11-0980 the 100 year
flood predicted by the fractal correla-
tion is a factor of 2.3 greater than the
100 year flood predicted by the log
Pearson type III correlation. If, in fact,
fractal statistics are applicable, then
the use of log Pearson type III statistics
consistently underestimates the sever-
ity of the 100, 150, and 200 year floods.

The values of H and the flood in-
tensity factor F for the ten benchmark
stations considered by Benson (1968)
are given in Table 1. These results show
that there are clear regional trends in
the values of F. The values in the south-
west are systematically high; this can
be attributed to the arid conditions
and the rare tropical storm that causes
severe flooding. The values in the
Pacific northwest are low; this can
be attributed to the maritime climate.
Because F is equivalent to a fractal
dimension, D = 2 - log F, this may be
a case in which the fractal dimension
of floods is diagnostic of climate.

The flow in a river is equivalent
to a time series. The sum or integral
of the flow in a river gives the volume
of water stored in a reservoir. Harold
Hurst spent his life studying reservoir
storage on the Nile and concluded that
extreme high stands and low stands in
reservoirs obey power-law (fractal)
statistics (Hurst et al., 1965). The rela-
tions between Hurst’s work and self-
affine fractals have been considered
in detail by Mandelbrot and Wallis
(1969a, 1969D).

DRAINAGE NETWORKS

Floods cause erosion, and this
erosion eventually forms drainage
networks. An example of a drainage
network is given in Figure 4A; this is
the drainage network in the Volfe and
Bell Canyons, San Gabriel Mountains,
near Glendora, California, obtained by
field mapping (Maxwell, 1960). On
average, one lower order of streams was
found than on standard topographic
maps; thus, the lowest order streams
are assigned order 0. The number-
length statistics for this network are
given in Figure SA; a good correlation
with equation 6 was obtained taking D

= 1.81. Leopold et al. (1964) have
obtained similar results for the entire
United States; a good correlation with
equation 6 was also found with D
= 1.83. Drainage networks are in gen-
eral fractal, with little variation in the
fractal dimension. Again, the fractal
dimension of the drainage network is
not diagnostic of its geologic setting.
Various statistical models were pro-
posed in the 1960s in order to simulate
drainage networks; this work was
reviewed by Smart (1972). In the past

Fractal continued on p. 212

GSA TODAY, August 1994

1000 —_ F
8 ———--— Ga
wb R e
N _- ."/ /-/
; ::_ Figure 3. Peak
400 |- u discharge V during
Ve 200 —— a flood associated
'_:. with the period T.
The dots are the
200- sequence of ob-
served floods. A:
Middle Branch of
the Westfield River
100 at station 1-1805
80 in Goss Heights,
L PR R S | L [ N Massachusetts. B:
1 2 S 10 50 100 Arroyo Seco at
A Toyrs station 11-0980
000 near Pasadena,
—— . California. Correla-
At Su yd tion lines are fractal
seof-  T__TTC i - (F), two parameter
p— gamma (Ga),
mol Gumbel (Gu), log
v Gumbel (LGu), log
m? 100 normal (LN),
F - /; * H=087,F=74 ;'::;’;Sgp:"m s
or ~ g (LP). The fractal
- ;-,// correlations are
ok 4 with equation 8.
K 5_5'»".-
10 . l/ L T 1 il | |
1 2 5 10 50 100
B T, yrs
TABLE 1. VALUES OF H AND THE FLOOD INTENSITY FACTOR F
FOR TEN BENCHMARK STATIONS
Station Site H F
1-1805 Westfield River, Goss Heights, Mass. 0.513 3.31
2-2185 Oconee River, Greenboro, Ga. 0.540 3.47
5-3310 Mississippi River, St. Paul, Minn., 0.470 295
6-3440 Little Missouri River, Alzado, Wyo. 0.520 3.3
6-8005 Elkhorn River, Waterloo, Neb. 0.540 3.47
7-2165 Mora River, Golondinas, N. Mex. 0.630 427
8-1500 Llano River, junction, Tex. 0.719 5.24
10-3275 Humboldt River, Comus, Nev. 0.616 413
11-0980 Arroyo Seco, Pasadena, Calif. 0.875 7.4
12-1570 Wenatchee River, Plain, Wash. 0.310 2.04
Note: Stations in Benson (1968) study.
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three years there has been a rebirth of
interest in the problem. Various models
have been proposed by Willgoose et al.
(1991), Meakin et al. (1991), Stark
(1991), Chase (1992), Kramer and
Marder (1992), and Inaoka and Taka-
yasu (1993). As a typical example, we
consider the diffusion-limited aggrega-
tion (DLA) model proposed by Masek
and Turcotte (1993). We considered a
square grid of points and introduced
seed cells on the boundary of the grid.
The mechanics of the model are illus-
trated in Figure 6. A square grid of

15 x 15 cells is used in this illustration.
Five seed cells are introduced at ran-
dom points on the lower boundary.
The evolving network must grow from
these seed cells. For the example
shown, 16 cells have been accreted

to the seed cells. Cells are allowed to
accrete if one (and only one) of the
four nearest neighbor cells is part of
the preexisting network. Prohibited
sites that already have two occupied
neighboring sites are identified by stars.
Sites available for accretion to the net-
work are indicated by open circles. A
random walker is introduced at a ran-
dom celi on the grid, and the hypo-
thetical path is traced by the solid line.
After 28 random walks it accretes to
the network at the shaded cell. A ran-
dom walker proceeds until the walker
either (1) accretes to the network, (2)
exits the grid, or (3) lands on a prohib-
ited cell. In each case the walk is termi-
nated, and a new walker is introduced

on a new, randomly selected site. The
iteration of this basic procedure results
in a branching network composed of
linked drainage cells. A simulation car-
ried out on a 256 x 256 grid is illus-
trated in Figure 4B; 20,000 random
walkers have been introduced. The sim-
ulated and actual drainage networks are
reasonably similar. The number-length
statistics for the simulated network are
given in Figure 5B; a good correlation
with equation 6 is obtained taking D =
1.85. Again, good agreement is
obtained between the simulated and
real networks.

The random walkers can be inter-
preted as floods that flow over a rela-
tively flat surface until they find a
gully. When the flood enters the gully,
it further erodes the gully and extends
the network headward. This type of
headward gully evolution has often
been proposed for actual drainage net-
works (Schurnm et al., 1987). The DLA
model can also be used to generate syn-
thetic topography. A power-law rela-
tion is assumed between stream order
and gradient; the resulting topography
is given in Figure 7.

STATISTICS OF
SEDIMENTARY LAYERS

Eroded sediments are eventually
deposited as part of a layered sedimen-
tary sequence. Each layer represents a
distinct sedimentation event with an
upward gradation from coarse-grained
sediments to fine-grained sediments;
individual layers are generally sepa-
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Figure 6. lllustration of the mechanism for network growth in the diffusion-limited aggregation
(DLA) model. A random walker is randomly introduced to an unoccupied cell. The random walk
proceeds until a cell is encountered with one (and only one) of the four nearest neighbors occu-
pied (striped cell). The new cell is accreted to the drainage network; other allowed and prohib-

ited sites are shown.

rated by well-defined bedding planes.
Sediment deposition is a very complex
series of processes. In some settings sed-
iments are deposited directly by floods,
as in deep lakes. In these cases it may
be possible to infer flood-frequency
statistics and paleoclimate from sedi-
mentary layering statistics. Sediments
deposited in shallow water can be
transported and redeposited by storms.
Despite the complexities, sediment lay-
ering under a variety of circumstances
exhibits fractal statistics.

Two recent studies of the thickness
statistics of turbidite deposits show
fractal statistics. Rothman et al. (1994)
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Figure 4. A: The drainage network in the Volfe and Bell Canyons, San Gabriel Mountains, near Glendora, California, obtained from field mapping.
B: lllustration of a DLA model for a drainage network.
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Figure 5. Dependence of the number of streams of various orders on their mean length for (A) the example illustrated in Figure 4A and (B) the
model illustrated in Figure 4B. Each circle corresponds to the stream order indicated and the correlations are with equation 6.

carried out direct measurements on an
outcrop of the Kingston Peak Forma-
tion near the southern end of Death
Valley, California. Their results are
given in Figure 8A; an excellent correla-
tion with equation 1 is obtained taking
D = 1.39. Hiscott et al. (1992) have
studied a volcaniclastic turbidity-cur-
rent deposit in the Izu-Bonin fore-arc
basin offshore of Japan. Layer thick-
nesses were obtained from formation-
microscanner images in the middle
upper Oligocene part of the section.
Results for two DSDP holes located 75
km apart are given in Figure 8B; a good
correlation with equation 1 is obtained
taking D = 1.12.

Turbidite deposits are associated
with slumps off the continental mar-
gin. Although it is doubtful that the
turbidite layer thicknesses scale directly
with the sizes of slumps, it is likely that
the fractal distribution of layer thick-
nesses implies a fractal size distribution
of slumps. 1t is interesting to note that
Bak et al. (1988) introduced the con-
cept of self-organized criticality in
terms of the size distribution of sand
slides off sand piles. A conclusion of
their studies was that the size distribu-
tion of sand slides should be fractal.
Over the past several years, several lab-
oratory studies have been carried out
to determine the circumstances under
which sand slides exhibit fractal statis-
tics; this work was reviewed by Nagel
(1992). The fractal statistics of turbidite
layering is evidence that the associated
slumping may be an example of self-
organized criticality.

Fractal correlations of sedimentary
sequences are not restricted to turbidite
deposits. Stolum (1991) obtained frac-
tal statistics for the Middle Jurassic Tiljo
Formation in the North Sea Halten
Bank basin; these sediments were
deposited in a marine shelf environ-
ment. Stolum found values of D =0.71,
0.80. Malamud and Turcotte (1992)
obtained fractal statistics for sandy-bed
thicknesses in the shallow marine envi-
ronment of the Late Devonian Ithaca
Formation, New York, with D = 1.41.

The fractal behavior of stratigraphic
sequences has also been demonstrated
using spectral techniques. Hewett
(1986) gave results for a density-
porosity log in a well through a late
Miocene-early Pleistocene sandstone
formation deposited in a deep subma-
rine fan. He showed that the spectrum
of the well log correlated with equation
3, taking B = 0.71. Similar results have
been reported by Todoeschuck and
Jensen (1988) and by Todoeschuck
et al. (1990).

Hewett (1986) also developed a
fractal-based interpolation technique
for determining the porosity distribu-
tion in reservoirs. The three-dimen-

212

GSA TODAY, August 1994



Figure 7. Color-coded topography generated
by the DLA model.

sional porosity of the reservoir was
determined from a three-dimensional
Fourier expansion. The coefficients in
the vertical expansion were obtained
from well logs. The coefficients in the
horizontal expansions were scaled as
the typical noise spectra of topography.
The phases in the expansions were
determined from well data. A synthetic
example is given in Figure 9. This was
obtained on a 256 x 256 grid, and the
magnitude of the synthetic porosity in
this cross section is arbitrary. The coef-
ficients in the vertical Fourier expan-
sion satisfied the fractal relation 3 with
By = 1.2, and the coefficients in the
horizontal Fourier expansions satisfied
relation 3 with By . 2.2; the ratio of the
vertical to horizontal coefficients was
taken to be 5. With the ratios of the
amplitudes of all coefficients deter-
mined by the fractal scaling, only the
phases remain to be determined by the
available data. Well-log data have been
used, and the resulting fractal interpo-
lations have been shown to be quite
accurate in oil-field secondary recovery
tests (Hewett, 1986).

DISCUSSION

Fundamental geomorphic and
stratigraphic processes are relatively

Figure 9. Cross section of a
synthetic sedimentary sequence
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from Deep Sea
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from DSDP hole
793. The number
of layers per meter
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given as a function
of h. Correlations
with equation 1
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poorly understood. Some might say
that the underlying processes of flood-
ing, erosion, sediment transport, and
stratigraphy are so complex as to defy
successful modeling. Yet it is recog-
nized that these processes satisfy
fractal statistics under a wide variety
of circumstances. There is a strong
suggestion that modern approaches

in statistical physics may be applicable
to this class of problems. Examples
include diffusion-limited aggregation
and self-organized criticality; these
approaches yield fractal statistics. In
the past, these problems were com-
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showing color-coded porosity. This is a self-affine fractal; it can be applied at any scale,
but the vertical scaling is different from the horizontal scaling.

0.0
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monly addressed by geostatistical
empiricism. Flood-frequency analysis
is an example. It will be exciting to see
whether some or all of these processes
can be modeled by the new
approaches.

In addition, there is the sugges-
tion that stratigraphic layering may
contain a wealth of unused informa-
tion. If the fractal dimension of
floods is climate dependent and if
stratigraphic sequences can be corre-
lated directly with floods, then the
sequences may provide improved data
for the evaluation of the flood hazard
today as well as providing a new
database for paleoclimatology.
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