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ABSTRACT

The mechanisms by which magma is generated and trans-
ported through continental crust and how these processes affect
the chemical and mechanical evolution of the lithosphere are
some of the least understood issues of continental dynamics. We
report here on the evolution of an unusually well-exposed early
Mesozoic arc that originally formed along the ancient margin of
Gondwana and is now located in western New Zealand. The
pre-Cenozoic configuration and deeply eroded character of this
arc lead us to the following conclusions about magmatism and
deformation at 10-50 km paleodepths: (1) The mafic-intermedi-
ate composition of the lower crust and the mineral reactions
controlling melt production strongly influenced pathways of
melt transfer and controlled the mechanical behavior of the
lithosphere during orogenesis. (2) Evolving lithospheric strength
profiles during magmatism and convergence produced transient
periods of vertical coupling and decoupling of crustal layers. (3)
Late orogenic extension was driven by plate interactions rather
than by gravitational forces and a weak lower crust.

INTRODUCTION

Many of the Mesozoic Cordilleran plutonic complexes located
in western North America (Tepper et al., 1993), the Andes
(Petford and Atherton, 1996), Antarctica (Wareham et al., 1997),
and New Zealand (Muir et al., 1995) contain tonalite to granodi-
orite batholiths that are thought to originate from the partial
melting of mafic lower crust. However, considerable uncertainty
surrounds how these magmas are produced and move through
the lower crust, and how these processes influence crustal evo-
lution. Much of this uncertainty arises because Phanerozoic arc
systems that allow direct examination of mafic lower crust are
rare. There are even fewer field sites where exposures of tilted
crustal sections allow us to examine structural and magmatic
features that evolved simultaneously at lower, middle, and upper
crustal levels.
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Figure 1. Inset shows present configuration (top) and Cretaceous
reconstruction (bottom) of western New Zealand assembled by
restoring the Median Tectonic Zone (MTZ) to its pre-late Cenozoic
position. Main diagram shows Cretaceous reconstruction. Metamorphic
pressures from Fiordland (7-16 kbar) represent the peak of Early
Cretaceous metamorphism at ca. 120 Ma. Data show a south-tilted
lower crustal section and are from J.Y. Bradshaw (1985, 1989), Clarke
et al. (2000), Daczko et al. (2001a, 2001b), and Daczko et al. (2002a).
Pressures from Westland show shallower Early mid-Cretaceous
(125-105 Ma) pluton emplacement depths (after Tulloch and Challis,
2000). Abbreviations show key locations or features: SP—Separation
Point, P—Paparoa Range, V—Victoria Range, M—Milford Sound, E—
Mount Edgar, MD—Mount Daniel, G—George Sound, C—Caswell
Sound, DS—Doubtful Sound, WFO—Western Fiordland Orthogneiss.

Exposures of early Mesozoic arc crust in western New
Zealand allow us to examine directly how deformation inter-
acted with magma generation and transport processes at outcrop
to lithospheric scales. The Fiordland part of this belt (Fig. 1) con-
tains >5000 km? of high-pressure (P = 14-16 kbar) migmatites,
granulite facies mineral assemblages, and layered mafic-interme-
diate intrusions that formed in the lower and middle crust of the
arc (25-50 km paleodepths) during the Early Cretaceous. The
Westland part (Fig. 1 preserves the middle to upper crustal lev-
els of this same arc (10-27 km paleodepths) where sodic, high
St/Y granitoids were emplaced following partial melting of
mafic-intermediate lower crust (Muir et al., 1998; Tulloch and
Challis, 2000). This unusual degree of exposure allowed us to
examine the evolution of a 50-km-thick column of deforming
continental crust over a 35 Ma cycle of orogenesis (Fig. 2).
Reconstructing this type of composite crustal column is based on
metamorphic pressure data and on inferences about how out-
crops can be restored to their original depth-stratified paleoge-
ometry (see also Karlstrom and Williams, 1998, 2002; Miller and
Paterson, 2001).
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RECONSTRUCTING THE FIORD-
LAND-WESTLAND OROGEN

On the South Island of New Zealand, a
segment of the present-day boundary
between the Australian and Pacific plates
occurs along an 800-km-long transform
called the Alpine fault (Fig. 1). This fault
has accommodated ~460 km of dextral
strike-slip displacement since the Miocene
(Wellman, 1953). By removing this
amount of slip, the pre-Cenozoic configu-
ration of western New Zealand can be
reconstructed (Tulloch and Challis, 2000).
Cretaceous reconstructions (Fig. 1) show
a continuous NE-trending belt of calc-
alkaline granitoids, layered mafic igneous
complexes, and volcano-sedimentary
terranes that define an early Mesozoic
(247-105 Ma) composite arc (Kimbrough
et al., 1994; Mortimer et al., 1999).

Near continuous exposure along coast-
lines and in the mountainous terrain of
Fiordland reveal the three-dimensional
structure of the deepest parts of the arc.
Fiordland (Fig. 1) contains a layered,
dome-shaped mid-lower crustal section
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where the shallowest paleodepths
(~25 km) occur in the center at Caswell
Sound (C, Figs. 1, 2A, 2B) and the deep-
est paleodepths (45-50 km) occur at
Milford Sound (M, Figs. 1, 2A, 2B) and
Doubtful Sound (DS, Figs. 1, 20). In
Westland, high St/Y sodic granitoids of
the 125-105 Ma Separation Point Suite
(Fig. D record Early Cretaceous emplace-
ment depths of 8—27 km (Tulloch and
Challis, 2000).

The ages of major intrusive features
and of Cretaceous deformation and meta-
morphism are well constrained by pub-
lished geochronology (Mattinson et al.,
1986; McCulloch et al., 1987; Gibson and
Ireland, 1995; Muir et al., 1998; Ireland
and Gibson, 1998; Nathan et al., 2000;
Tulloch et al., 2000). Published dates and
new analyses of zircon (Klepeis et al.,
2001; Hollis et al., 2002; G. Gehrels, 2002,
personal comm.) from within the section
reveal three tectonic phases (Fig. 2): (1)
the addition of mafic-intermediate magma
into the lower crust (126116 Ma) and the
partial melting of lower crustal host

126-116 Ma

Fiordland

Westland
Fiordland
directional heat loss by conduction
116-105 Ma
-
Westland

gneisses; (2) contractional deformation
and the emplacement of sodic, high Sr/Y
granitoids in the middle and upper crust
(116105 Ma); and (3) late orogenic ex-
tension, cooling and exhumation (105—
90 Ma). This last phase preceded incep-
tion of seafloor spreading in the Tasman
Sea (ca. 84 Ma) by ca. 15 Ma (Gaina et al.,
1998) and was accompanied by the for-
mation of extensional metamorphic core
complexes in Westland, New Zealand
(Tulloch and Kimbrough, 1989).

MAGMA EMPLACEMENT AND PAR-
TIAL MELTING IN THE LOWER CRUST
During the period 126-116 Ma (Fig.
2A), the lower crust of the Fiordland belt
accumulated at least 10 km (thickness) of
mafic-intermediate magma (Mattinson et
al., 1986). The first phases were gabbroic
with minor ultramafic compositions; later
phases were dominated by diorite. This
intrusion formed a >3000 km? tabular
batholith called the Western Fiordland
Orthogneiss (WFO, Figs. 1, 2A) and has
been interpreted to have added sufficient

Figure 2. Cartoons illustrating the tectonic
evolution of the Fiordland-Westland belt.
Abbreviations and color scheme are as in
Figure 1. A: During interval 126-116 Ma,
mafic-intermediate magma (WFO, yellow)
was added to the middle (bottom part of
green color) and lower (dark pink and tan)
crust. Upper crust was composed mostly of
Paleozoic Gondwana margin rocks (green)
and granitoid plutons (light blue and light
pink). Lower crust was composed of older
(>126 Ma) arc-related rocks, including parts
of the Median Tectonic Zone (MTZ) and
Mount Edgar diorite (E) in tan and Paleozoic
gneisses of Gondwana in dark pink. B:
Contractional deformation (116-105 Ma)
followed magmatism and melt production.
C: Late orogenic extension (105-90 Ma)
formed metamorphic core complexes (P

and V) in mid-upper crust and the Doubtful
Sound shear zone (DS) in the lower crust.
Schematic strength profiles illustrate variations
in the strength of the lower crust during two
stages of orogenesis. Lower crust in A was
weakened by magmatism. Lower crust in B
was strengthened by dehydration and the
cooling of the Western Fiordland Orthogneiss
(WFO) to T < 700 °C following data presented
in Daczko et al. (2002b).



heat to the lower crust to partially melt
host gneisses (Daczko et al., 2001b). At
the time of this intrusion, the lower crust
was composed of older (>126 Ma) verti-
cally stratified mafic-intermediate intrusive
phases of the early Mesozoic arc, includ-
ing the western Median Tectonic Zone
(MTZ) and Mount Edgar (E) diorite (Figs.
1, 2; Hollis et al., 2002), and Paleozoic
gneisses of Gondwana margin affinity
(Tulloch et al., 2000).

Field data show that the spatial distribu-
tion of rocks that partially melted follow-
ing magma emplacement was highly het-
erogeneous. Above and near the top of
the batholith, at Caswell (C, Figs. 1, 2A)
and George sounds (G, Figs. 1, 2A),
migmatites formed in a narrow zone
200-500 m thick near the batholith-coun-
try rock contact. In contrast, below the
batholith a region of lower crust at least
10 km thick partially melted (Fig. 2A).
Petrologic analyses suggest that the partial
melting of mafic-intermediate gneisses be-
low the batholith was patchy and mostly
involved hornblende breakdown to form
garnet surrounded by leucosome
(Daczko et al., 2001b).

To test possible mechanisms of melt
generation in gneisses below the
batholith, piston-cylinder experiments
were performed on an unmelted sample
of dioritic gneiss at P = 14 kbar and T =
800-975 °C (Antignano et al., 2001). The
mineral assemblage consisted of plagio-
clase + quartz with hornblende, clino-
zoisite, and biotite as the hydrous phases.
At'T = 825 °C, biotite undergoes melting
in the absence of free water (fluid-ab-
sent), followed by the reaction of horn-
blende and clinozoisite resulting in garnet
+ melt as reaction products. Melt compo-
sitions initially are granitic due to the
influence of biotite but become granodi-
oritic to tonalitic with increasing tempera-
ture as the main reaction shifts to fluid-
absent melting of hornblende + clino-
zoisite (Fig. 3A). Calculated water activi-
ties of the melts are low (0.39 to 0.12)
and trace element data from experimen-
tally produced glasses show high St/Y
ratios. Melt fractions remained low
(=10 vol%) at all temperatures up to T =
975 °C. This suggests that although partial
melting occurred in large parts of the sec-
tion below the batholith (Fig. 2A), the vol-
ume of melt produced probably remained
low. These results may explain the low
percentage of leucosome observed in

mafic lower crust in the field and con-
trasts with the much higher melt fractions
observed in migmatitic paragneiss above
the batholith.

MELT SEGREGATION AND
TRANSPORT

In migmatite formed at paleodepths of
45-50 km (Fig. 3D), diffuse patches of
leucosome parallel gneissic layering and
feed laterally into vertical (layer-perpen-
dicular), vein-filled extension fractures
(Figs. 3E, 3F, 3G). The sharp, straight
edges of the veins and curved vein tips
are typical of brittle extension fractures.
The fracture sets cut across all lithologic
boundaries and occur within hundreds of
square kilometers of the lower crustal sec-
tion, including the batholith. These fea-
tures provide strong geological evidence
that melt segregation and transport were
aided by diking and fracture propagation
following batholith emplacement.

The physical links that occur between
leucosome in migmatitic gneiss and the
vein-filled fractures and dikes suggest that
positive volume changes and the devel-
opment of high melt fluid pressures dur-
ing melt production induced brittle failure
by lowering effective normal stresses in
the lower crust (e.g., Clemens and Mawer,
1992; Davidson et al., 1994). In this sce-
nario, the leucosome observed in the field
reflects melt migration along fractures. We
tested this hypothesis in the field and lab-
oratory using metamorphic and geochem-
ical relationships that record how partial
melts interacted chemically with gabbroic
gneiss during their migration. Adjacent to
leucosome in gabbroic gneiss, horn-
blende-bearing assemblages recrystallized
to garnet granulite (Figs. 3E, 3F) at condi-
tions of T > 750 °C and P = 14 kbar
(Clarke et al., 2000). Early theories (e.g.,
Blattner, 1976; Bradshaw and Kimbrough,
1989) suggested that these recrystallized
zones formed by dehydration as CO,-rich
fluids were introduced along fractures.
However, the garnet-bearing dehydration
zones only occur in gabbroic gneiss and
are physically continuous with leucosome
formed in migmatitic diorite. These rela-
tionships led Daczko et al. (2001b) to in-
fer that dehydration of the gabbroic
gneiss reflected the scavenging of water
by migrating, water-poor partial melt
sourced from the melted diorite gneiss.

Distinctive trace and rare earth element
(REE) patterns in the dioritic and gabbroic

gneisses provided another means of test-
ing the interconnectivity and chemical
communication between the partial melt
produced in the diorite and the dehydra-
tion zones in the gabbroic gneiss.
Hornblende in partially melted dioritic
gneiss displayed a progressively increas-
ing heavy REE content relative to that of
chondrite. In contrast, hornblende in the
fractured gabbroic gneiss showed a pro-
gressively decreasing heavy REE content.
These distinctive patterns were inherited
by garnet that formed in both the
migmatitic structures in diorite (Fig. 3D)
and in veins where partial melts invaded
the gabbroic gneiss (Fig. 3E). This result is
important because it supports the inter-
pretation that hornblende + clinozoisite
produced garnet + melt in the dioritic
gneiss and that these melts migrated into
gabbroic gneiss along fracture networks.

To further test the hypothesis that frac-
tures can be produced by the fluid-absent
melting of hornblende + clinozoisite, we
established experimentally that this reac-
tion involves a positive volume change.
Partial melting experiments on solid rock
cores show that the dilational strain asso-
ciated with the hornblende + clinozoisite
reaction is high enough to induce fracture
in matrix feldspar and quartz (Fig. 3B)
and confirms the low water activity of
these melts (Antignano, 2002). These re-
sults support the interpretation that
fluid-absent melting reactions with high
dilational strain can produce fracture
networks that allow for interconnectivity
and melt transfer. These data combined
with the development of vein arrays
within large parts of the Fiordland section
suggest that fracture networks aided melt
segregation and that melt migration was
linked to dehydration in the surrounding
gabbroic rocks.

Field relationships also show that frac-
ture propagation and diking were not
the only mechanisms of melt transfer fol-
lowing intrusion of the batholith. Foliation
planes, lithologic contacts, boudin necks,
and fold hinges in ductile shear zones
that developed after batholith emplace-
ment also contain leucosome. These
observations suggest that a combination
of fracture networks and deformation
in shear zones moved partial melt hori-
zontally and vertically through the crustal
column.
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Figure 3. A: Compositions of partial melts in metadiorite plotted on an Ab-An-Or diagram. B: Backscatter image showing textural evidence of the

melting reaction: hornblende + clinozoisite + quartz + plagioclase = clinopyroxene + garnet + melt + plagioclase + Fe-oxides in solid diorite core
experiment. Reaction products surround quartz grain and melt is observed in a fracture (red box). Scale is 200 microns. Inset shows close-up of
melt fracture in quartz grain, product clinopyroxene is shown in top left corner. Black crack is due to unloading of experiment. Scale is 20
microns. C: Effective viscosity vs. melt fraction plot showing results from solid-media deformation experiments. Metadiorite sample displayed a
high effective viscosity compared to pelite under subsolidus conditions and is similar to amphibolite (Rushmer, 1995) and biotite-plagioclase-
quartz (BPQ) gneiss (Holyoke and Rushmer, 2002) with partial melt present (Antignano, 2002). D: Migmatitic dioritic gneiss showing leucosome
surrounding peritectic garnet. E: Garnet-bearing leucosome filling extension fracture in gabbroic gneiss. F: Granulite facies dehydration haloes
surrounding leucosome and fracture networks. Haloes contain clinopyroxene + garnet assemblage that replaces hornblende-bearing assemblage
in gabbroic gneiss. G: Reorientation of extension fractures record ductile deformation following brittle failure of the lower crust.

CHANGES IN LOWER CRUSTAL
STRENGTH AND RHEOLOGY

In Fiordland, magma compositions and
the liquidus temperature of basalt indicate
that the initial intrusion temperatures of
the WFO were likely =1200 °C following
the estimates of Petford and Gallagher
(2001). Mineral assemblages that formed
in the batholith and its host rocks follow-
ing its emplacement record progressive

GSA TODAY, JANUARY 2003

changes in temperature and fluid activi-
ties. Partial melting and granulite facies
metamorphism occurred at 750 °C < T <
850 °C (Daczko et al., 2001b). With time,
kyanite- and paragonite-bearing assem-
blages replaced older garnet-clinopyrox-
ene-plagioclase assemblages reflecting
isobaric cooling of the lower crust to ~650
°C prior to 108-105 Ma (Daczko et al.,
2002b). These observations and the well-

known dependence of lower crustal
strength and rheology on melt fraction,
temperature, and fluid activity imply that
the lower crust must have had a different
mechanical strength at different times be-
tween 126 and 105 Ma. These results are
consistent with evidence of complex rhe-
ological stratifications in sections of arc
crust exposed in the U.S. Cordillera
(Miller and Paterson, 2001).



During the earliest stages of magmatism
(126-116 Ma) suprasolidus shear zones
formed at the upper and lower bound-
aries of the batholith. At Mount Daniel
(MD, Figs. 1, 2A) these shear zones con-
tain tightly folded tonalite sheets that are
cut by less deformed sheets, indicating
that deformation coincided with the peri-
odic emplacement of magma. Coarse bi-
otite in tightly folded layers exhibits radial
patterns and tabular plagioclase lacks evi-
dence of subsolidus recrystallization.
These features reflect deformation under
magmatic conditions and suggest that the
flow of magma participated in, and may
have facilitated, the imbrication of crustal
slices during crustal thickening.

Inside the batholith all magmatic fea-
tures are cut by the fracture arrays that
have been linked physically and chemi-
cally to sites of partially melted host rock
(Fig. 3). The fact that these fractures cut
the lower contact of the batholith (MD,
Fig. 2A) provides direct evidence that by
ca. 116 Ma the batholith had mostly crys-
tallized and was strong as it deformed to-
gether with its host rocks at high effective
viscosities. Finally, ductile shear zones
that record subsolidus temperatures of
650 °C < T < 800 °C deform many of the
fractures and dikes inside and below the
batholith (Daczko et al., 2001a). These
transitions suggest that during the period
ca. 116-105 Ma, the lower crust initially
was weakened by the addition of heat
and magma and later strengthened as
melt moved out of the lower crust and
the lower crust cooled. Experimental data
confirmed the relatively high strengths of
lower crustal mafic rocks even as they un-
derwent mineral reactions involving par-
tial melting (Fig. 3C). These changes are
illustrated qualitatively in the strength-
depth profiles showing a weak lower
crust in Figure 2A and a stronger lower
crust in 2B.

CHANGING PATTERNS OF DEFOR-
MATION IN THE LOWER CRUST

One of the most useful features in the
study of deformation in Fiordland was the
penetrative arrays of extension fractures
surrounded by garnet granulite dehydra-
tion zones that formed over hundreds of
square kilometers of the section, includ-
ing the batholith. Changes in the angular
relationships among these and other vein
sets provided a means of defining strain
gradients and the kinematic evolution of

A) Fiordland Range: Vertically coupled with strong lower crust

ﬂﬂﬂ((/ '

el

+ Mafic lower crustal compositions
* Low melt fractions controlled by hornblende
* clinozoisite partial melting reactions
« Efficient extraction of melt via fracture networks

", lr'llnl l:_n'_._:—:-"—

* Cooling of lower crust to <700°C following magmatism
* Simultaneous contraction above and below batholith

* Narrow, focused arogenic style with limited
lateral flow of lower crust

B) Shuswap Range: Vertically decoupled with weak middle crust

= Pelitic middle crustal compositions

* Weak coupling of deformation above and below weak crust

* Widespread migmatite formation * Distributed surface deformation and diffuse orogenic style

+ High partial melt fractions controlled
by partial melting of pelites

* Lateral flow of middle-lower crust
with widespread upper crustal extension during melting

Figure 4. Cartoons showing the different possible mechanical responses of continental
lithosphere following partial melting of the deep crust. A: The Fiordland-Westland belt reflects a
strong lower crust during the period 116-105 Ma that promoted vertical coupling of deformation.
B: The Shuswap range of southern British Columbia, Canada is characterized by a weak middle
crust (after Vanderhaege and Teyssier, 1997; 2001). Text below diagrams highlights differences in

the characteristics and boundary conditions that influence orogenic styles.

shear zones from the outcrop to the re-
gional scale (Fig. 3G). Within the western-
most part of the section, a penetrative,
SW-dipping gneissic layering also pro-
vided a reference frame that facilitated a
comparison of structural styles across
the belt. In the west, where Early
Cretaceous deformation was weakest,
thermobarometric data indicate that this
layering was oriented close to horizontal
during and after batholith intrusion and
fracture sets cut across layering at high
angles approaching 90°.

Following partial melting of the lower
crust, swarms of vertical, <1-m-thick, E-
and NW-striking shear zones formed at
the margins of dikes below the batholith.
These shear zones form antithetic (dex-
tral) and synthetic (sinistral) pairs that
record arc-parallel (NE-SW) displace-
ments and subhorizontal (layer-parallel)
arc-normal (NW-SE) shortening within a
dominantly sinistral flow regime (Daczko
et al., 2001a). Subsequently, these shear
zones were deformed by a series of SE-
dipping (avg. 27°), vertically stacked (100
m spacing) shear zones that contain im-
bricated, asymmetric pods of mylonite.

These pods form antiformal stacks that
are typical of thrust duplexes and record
layer-parallel (subhorizontal) shortening
and layer-perpendicular (subvertical)
thickening during arc-normal contraction
(Daczko et al., 2001a). Mineral assem-
blages that define foliation planes in these
thrusts record metamorphic conditions of
P=14 % 1.2 kbar and T = 674 + 36 °C
(Daczko et al., 2001a). This style of du-
plex involving simultaneous deformation
along steeply and shallowly dipping folia-
tions was also noted by Karlstrom and
Williams (2002) as an important mecha-
nism in the middle crust for accommodat-
ing strain during synchronous thickening
of crust and migration of melt.

As the batholith cooled further and
contraction continued, the style of defor-
mation in the lower crust changed. Along
the western boundary of the MTZ (below
letter M in Figs. 1, 2B), shortening re-
sulted in a vertical, 10-15-km-wide, N-
striking transpressional shear zone that
cuts across the entire lower crustal sec-
tion, including the lower and eastern con-
tact of the batholith. This shear zone
records an oblique-sinistral sense of shear.
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Near vertical foliations that define the
shear zone at deep levels (14-16 kbar)
gradually flatten upward and merge into a
horizontal décollement zone underlying a
mid-crustal fold-thrust belt (7-9 kbar) at
the top of the batholith (Fig. 2B). On the
basis of thermobarometry, this shear zone
transects a crustal thickness of at least 20
km (Fig. 2B). The mid-crustal fold-thrust
belt is well exposed at Caswell Sound (C,
Figs. 1, 2B) and exhibits features that are
common in many upper crustal settings
including imbricated thrust splays that
sole into flat detachments, fault propaga-
tion folds, and conjugate thrusts and back
thrusts (Daczko et al., 2002a).

Both the mid-crustal fold-thrust belt
and the steep lower crustal shear zone
below it cut the 126-116 Ma Western
Fiordland Orthogneiss and are deformed
by a younger set of upper amphibolite fa-
cies shear zones, including the Doubtful
Sound shear zone (DS, Figs. 1, 2C). These
younger shear zones cut all contractional
structures in Fiordland and record decom-
pression and cooling of the granulite belt
through the closure temperature of horn-
blende (~550 °C) by ca. 108-105 Ma and
to =400 °C by 90 Ma (Gibson et al., 1988;
Gibson and Ireland, 1995; Klepeis et al.,
1999; Nathan et al., 2000). These relation-
ships and U-Pb geochronology (Tulloch
et al., 2000; Hollis et al., 2002) indicate
that as the batholith cooled during the pe-
riod 116-105 Ma, contraction was cou-
pled at different levels of the crust
through an interconnected network of
steeply and gently dipping shear zones.

DISCUSSION AND CONCLUSIONS

Lithospheric-Scale Interactions Among
Deformation and Melt Transfer
Processes

The Fiordland-Westland example pro-
vides strong geological evidence that dik-
ing and melt-enhanced fracturing was an
important mechanism for the segregation
and initial ascent of melt out of the lower
crust. Similar melt-enhanced fracture sys-
tems have been observed in other oro-
genic belts (Davidson et al., 1994; Roering
et al., 1995; Yamamoto and Yoshino,
1998) but to our knowledge none show
this behavior on such large scales as in
the Fiordland belt.

Once the batholith and its host rocks
had cooled to subsolidus temperatures
(T < 820 °C), structural elements in large
vertical shear zones were exploited as
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pathways for melt transport horizontally
and vertically through the crustal column.
These observations agree with models
that predict the buoyancy of hot felsic
magma and the dynamics of transpres-
sion can create pressure gradients that
help force magma through the crust
(e.g., Robin and Cruden, 1994; de Saint
Blanquat et al., 1998).

As transpressional shear zones evolved
in the lower crust, granitoids were em-
placed into the upper crust until ca. 105
Ma (Muir et al., 1995; Waight et al., 1998).
The Separation Point batholith represents
the final stages of this process. This
batholith consists of sodic, alkali-calcic
diorite to biotite-hornblende monzogran-
ite that is similar in composition to
Cordilleran adakite suites (Muir et al.,
1995). The geochemical and isotopic sig-
natures of these granitoids suggest that
they were derived either from young, hot
subducted oceanic crust or from mafic
crust at the root of a thickened (>40 km
paleodepths) magmatic arc (Muir et al.,
1995, 1998). Our observations support the
latter interpretation.

The isotopic (Sr, Nd) composition of
the Separation Point Suite also suggests
that rising magmas experienced little to
no interaction with felsic arc crust (Muir
et al.,, 1995, 1998). This implies that the
mixing of mantle and crustal components
to form shallow-level plutons occurred
in the mafic lower crust. Fiordland pro-
vides an example where the mixing of
mantle and crust components may have
occurred beneath a mafic intrusion (e.g.,
Petford and Gallagher, 2001), and where
the rapid ascent of hybrid magmas
through fracture networks and shear
zones inhibited crustal contamination at
shallower levels. Finally, data from
Fiordland reconcile the previously tenu-
ous relationship between crustal melting
and high-pressure granulite facies meta-
morphism. The data show that this meta-
morphism was related directly to the
migration of water-poor partial melts
through the lower crust.

Transient Coupling and Decoupling
Within the Lithosphere

High melt volumes (>30%) associated
with the emplacement of the WFO and
the virtual absence of any Cretaceous de-
formation outside the batholith and its
contact aureoles during emplacement in-
dicate that the lower crust probably was

decoupled from the upper and middle
crust during the interval 126-116 Ma.
Structural patterns indicate that subhori-
zontal (layer-paralleD) flow between layers
of colder, less deformed host rock charac-
terized this period and reflected the local-
ization of deformation into areas weak-
ened by melt and heat. However, this
period of vertical decoupling was tran-
sient, occurring only during the ~10 m.y.
period before the batholith cooled and
crystallized.

By ca. 116 Ma, the melt enhanced shear
zones at the base of the batholith were
abandoned. The development of gran-
ulite facies fracture arrays inside the
batholith and its host indicate that decou-
pling had ended by this time and that
these crustal layers were deforming to-
gether at similar high effective viscosities.
Evidence that a 10-15 km wide transpres-
sional shear zone in the lower crust
evolved simultaneously with, and was
connected physically to, a mid-crustal
thrust system following batholith em-
placement and crustal melting also indi-
cates that deformation at these levels was
coupled during the interval 116-105 Ma
(Fig. 2B). Metamorphic data suggest that
strengthening of the lower crust pro-
moted vertical coupling during this phase
and was aided by efficient melt extrac-
tion, dehydration, and cooling as the
batholith crystallized and melt escaped.

Structural features in the upper crust of
the arc exposed in Westland also are con-
sistent with a relatively strong, cooling
viscous lower crust after ~116 Ma. At shal-
low levels of the crust contractional defor-
mation occurred within a narrow (50-75
km wide) zone focused along the west-
ern side of the MTZ (SP, Fig. 1; Tulloch
and Challis, 2000). This narrow, focused
structural style (Fig. 4A) supports the pre-
dictions of numerical models of orogens
where a highly viscous lower crust prefer-
entially transmits stresses vertically
through the lithosphere (Royden, 1996;
Ellis et al., 1998). The style also contrasts
with the distributed style of near surface
deformation in orogens characterized by
a weak middle or lower crust (Fig. 4B).

Magmatism and Late Orogenic
Extension

In some Cordilleran settings, late oro-
genic extension has been linked to a ther-
mal weakening of the middle or lower
crust (Vanderhaeghe and Teyssier, 1997,



Ellis et al., 1998). For example, in the
Shuswap Ranges of southern British
Columbia, crustal melting and magma in-
trusion decreased crustal viscosity by sev-
eral orders of magnitude and appear to
have aided the development of exten-
sional structures within previously thick-
ened crust (Vanderhaeghe and Teyssier,
2001). However, in Fiordland, the discov-
ery of a vertical transpressional shear
zone that formed after batholith emplace-
ment, and evidence for a relatively strong
lower crust that promoted vertical cou-
pling prior to the onset of extension sug-
gest an alternative mechanism at work.
Late orogenic extension in western New
Zealand appears to be linked to changes
in plate boundary dynamics rather than a
change in lower crustal rheology. The
shift in structural style in Fiordland from
contraction and crustal thickening to
crustal thinning and decompression ca.
105 Ma corresponds to the end of sub-
duction and a reorganization of plate
boundaries outboard of Gondwana (J.D.
Bradshaw, 1989). This implies that the de-
velopment of a regional tensile stress field
at this time resulted in the extensional fail-
ure of the lithosphere rather than a weak-
ening of the lower crust by melt and heat.
These relationships suggest a different
type of response to magmatism and melt-
ing of the lower crust in Fiordland (Fig.
4A) compared to other orogens that ex-
perienced deep crustal melting such as
the Shuswap Range (Fig. 4B). One impor-
tant reason for the mechanical response
of the Fiordland-Westland orogen appears
to be the mafic composition of the lower
crust and the mineral reactions controlling
melt production. In Fiordland, melt pro-
duction was mostly controlled by horn-
blende-breakdown, which produced rela-
tively low volumes of partial melt that
were extracted from the lower crust via
fracture networks and ductile shear
zones. This situation contrasts with the
high melt volumes and widespread devel-
opment of diatexite in the Shuswap
Range, where melt production in
metapelitic protoliths was controlled by
biotite and/or muscovite breakdown.
These relationships imply that the horn-
blende-rich, mafic composition of the
lower crust and the mineral reactions con-
trolling melt production strongly influ-
enced the mechanical behavior of the belt
following magma emplacement.
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In summary, the Fiordland setting pro-
vides a natural laboratory within which
we can test our understanding of the
feedbacks that develop among magma-
tism, metamorphism, and deformation
during cycles of orogenesis. In addition,
the approach of using parallel field, labo-
ratory, and experimental studies may be
one of the most important tools we have
to develop a complete picture of coupled
processes in the continental lithosphere.
In Fiordland, this approach has revealed
the mechanisms by which magma was
generated and transported through lower
continental crust and how these pro-
cesses affected the evolution of the litho-
sphere over a 35 m.y. cycle.
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