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The photograph on the left is the color-coded elevation (in feet) of the state of Arizona. The photograph on the right is the color-coded roughness amplitudes
(arbitrary units) of the state of Arizona.

Fractals in geology: What are they and what are they good for?
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ABSTRACT

Obijects that are scale invariant are fractals. Many geologic phenomena and
processes are scale invariant and are therefore fractals. Rocky coastlines and
river networks are examples. Statistical frequency-size distributions of eco-
nomic ore deposits, earthquakes, and volcanoes are fractals. Fractals can be

used in empirical correlations, but they are also associated with chaotic proc-

esses. There is considerable evidence that tectonics and erosion are examples

of chaotic processes.

What is a Fractal?

I am sure that you have heard
of fractals; you may have seen frac-
tally generated computer graphics
and synthetic landscapes or may
be aware that a rocky coastline is a
fractal. But are fractals more than a
scientific curiosity? I would like to
convince you that at the very least,
fractals help us to bridge the gap
between geostatistics and physical
and chemical modeling of geologic
processes.

I am often asked the question,
“What is a fractal?” A definition that
is generally applicable is given by

where N is the number of objects
associated with the sizer, Cis a
constant, and D is the fractal
dimension. A power law (Prieto)
geostatistical distribution is gener-
ally a fractal.

One of the best examples of a
fractal is the classic Koch triadic
island illustrated in Figure 1. At
the largest scale r;, the triangle has
three sides, Ny = 3. At the next
smaller scale, three triangles with
sides rp = r{/3 are added; there are
now twelve sides, N, = 12. The
construction can be continued
indefinitely to smaller and smaller
scales. The fractal dimension of
this construction is easily obtained
from equation 1 by taking its loga-
rithm and writing it in the form
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Two important points should
be made:

1. The Koch triadic island is scale
invariant. The sides are self-similar
at any magnification. It is impossi-
ble to tell the scale from a photo-
graph of the island. Scale invari-
ance is a characteristic of many
geologic features; it is well known
to every geologist who has ever
looked at a picture of a rock for-
mation without a rock hammer or
lens cap to show the scale and
could not figure out the size.

2. The length of the perimeter of
the island approaches infinity as
the construction is extended to
smaller and smaller scales. This is
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the reason that the fractal dimen-
sion is greater than unity, the
Euclidean dimension of a line. The
length of the perimeter P is given by

P=Nr=CrlD, 3)

where N has been substituted from
equation 1.

The length of the perimeter of
the Koch triadic island is analo-
gous to the length of a rocky coast-
line. It was in this context that
Mandelbrot (1967) introduced the
concept of fractals. The length of
the coastline obtained using a
measuring rod of a specified
length is plotted against the length
of the measuring rod. The results
for the west coast of Great Britain,
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Figure 1. Three scales of the triadic Koch
istand, a classic fractal. At each smaller scale,
triangles with sides one-third smaller are
added to the center of each side of the
larger scale. As the construction is carried

to an infinitely smaller scale, the perimeter of
the island has an infinite length, but its area
is finite.
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originally considered by
Mandelbrot (1967), are given in
Figure 2. The value D = 1.25 is typi-
cal for coastlines or topographic
contours in a wide range of geo-
logic provinces; it is also quite
close to the value for the Koch tri-
adic island. The length of a rocky
coastline cannot be determined;
the fractal dimension is a measure
of its tortuosity.

The concept of fractals is easily
introduced in an introductory
physical geology course. When
topographic maps are first consid-
ered the student can be asked to
measure the total length along a
specified contour using different
spacings on a divider. The length
of the contour (perimeter) is plot-
ted against the divider length on
log-log paper; from equation 3
the slope is 1-D and the fractal
dimension of the contour can be
obtained.

Self-similar Fractals

In many geological contexts
the fractal distribution, equation 1,
can be considered to be a statistical
distribution. It is the only statisti-
cal distribution that is scale invari-
ant; thus there is an underlying
basis forits applicability to many
geological problems. A few exam-
ples of self-similar fractals:

1. The Korcak relation for the num-
ber of islands with an area greater
than a specified value is a fractal
with D = 1.30 (Mandelbrot, 1975).

2. Cargill et al. (1980, 1981) have
suggested that the fractal (power
law) relation can be applied to the
relation between tonnage and
grade in economic ore deposits
(Turcotte, 1986a).

3. Ivanhoe (1976) has suggested
that the fractal (power law) rela-
tion can be applied to the number-
size statistics for oil fields. It should
be noted that log-normal statistics
are often applied, but log-normal
statistics are not scale invariant.

4. Farthquakes have a fractal rela-
tion between size and frequency of
occurrence. Gutenberg and Richter
(1954) established an empirical
relation for the number of earth-
quakes N occurring in a specified
length of time with magnitudes
greater than m of the form

log N =-bm + a, (4)
where a and b are constants. This
relation is valid both globally and
regionally, and the b value is usu-
ally near 0.9. Aki (1981) showed
that equation 4 is a fractal relation
equivalent to equation 1; when the
magnitude m is converted to the

rupture area r2, the result is the
simple relation

D =2b. S)
Thus, D = 1.8 for seismicity. The
regional fractal distribution of seis-
micity may be used to assess the
seismic hazards (Turcotte, 1989).
The frequency of small earthquakes
can be extrapolated to determine

the frequency of occurrence of
large earthquakes.

5. McClelland et al. (1989) have
published frequency-volume statis-
tics for volcanic eruptions that cor-
relate well with equation 1, taking
D=2.14.

6. Materials can be fragmented in a
variety of ways: naturally, by
impacts, by explosives. Under
many circumstances a fractal distri-
bution as defined by equation 1
results (Turcotte, 1986b). The clas-
sic example for broken coal in
Britain obtained by Bennett (1936)
is given in Figure 3; good agree-
ment with equation 1 is obtained
taking D = 2.50.

It should be noted that empiri-
cal applications of fractals such as
that illustrated in Figure 3 have
upper and lower limits. The upper
limit is the size of the largest frag-
ment and generally is of the order
of the size of the region frag-
mented; the lower limit is gener-
ally of the order of the grain size.

A simple model illustrates how
fragmentation can result in a frac-
tal distribution. This model is illus-
trated in Figure 4; at each scale two
diagonally opposed blocks are
retained and no two blocks of
equal size are in direct contact with
each other. This is the comminu-
tion model for fragmentation pro-
posed by Sammis et al. (1986). It is
based on the hypothesis that the
direct contact between two frag-
merts of nearly equal size will
result in the breakup of one of the
fragments. It is unlikely that a
small fragment will break a large
fragment or that a large fragment
will break a small fragment. For the
cube of dimension 4 illustrated in
Figure 4 we have N; = 2 for ry = h/2
and N, = 12 for r, = h/4; thus, from
equation 1 we have D=1n 6/In 2 =
2.5850. Many fractal distributions
of fragments have fractal dimen-
sions near this value; one example
was given in Figure 3; another is
fault gouge (Sammis and Biegel,
1989).

The comminution model may
also be applicable to tectonic frag-
mentation. It is probably a good
approximation to assume that each
fault has a characteristic earth-
quake. Thus the fractal frequency-
magnitude statistics for earth-
quakes implies fractal number-size

statistics for faults. Because of lack
of exposure, erosion, and other
effects it is in general difficult to
quantify directly the number-size
statistics of faults. A systematic
study of the statistics of exposed
joints and fractures has been given
by Barton and Hsieh (1989).
Basement rock near Yucca
Mountain, Nevada, was cleared
and the distribution of fractures
mapped. Fractal dimensions near
D = 1.7 were obtained; this com-
pares with D = 1.6 for the surface
exposure of the comminution
model illustrated in Figure 4.

Self-affine Fractals

The ruler method for determin-
ing the fractal dimension of a
rocky coastline was discussed in
the previous section. An equivalent
method is to determine the num-
ber of square boxes N of size r
required to cover the coastline. If
the dependence of N on r satisfies
equation 1 a self-similar fractal is
defined. In many cases, however, it
is appropriate to use rectangular
rather than square boxes. A noisy
time series is a specific example. If
the number of rectangular boxes of
various sizes required to cover the
time series satisfies equation 1 a
self-affine fractal is defined.

Topography is an example of
both self-similar and self-affine
fractals. As discussed above a topo-
graphic map is usually an example
of a self-similar {ractal. A cross-
section of topography with eleva-
tion plotted against position along
a linear track is not a self-similar
fractal, however,; it is usually a self-
affine fractal.

Spectral methods are generally
applied to self-affine fractals.
Consider the Fourier sine series for
the height of topography h(x)
along a linear:irack of length L.
The Fourier representation is
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h(x) =n2=:1An sin (2 ] x/L), (6)

where L is the length of the track
and A, is the amplitude associated
with the wavelength

L
n

An= (7)

with n =1, 2.... The profile is a
fractal if the amplitude coefficients
A, have a power law dependence
on the wavelength A, that is

-2D

S
Ap=Ciy 2, ®)
where C is again a constant. This
relation is derived by counting the
number of rectangular boxes of
various sizes that are required to
cover the profile (Voss, 1988).

As a specific example of a self-
affine fractal, consider the random
walk illustrated in Figure 5. Take a
step forward and flip a coin; if it is
heads take a step to the right; if it
is tails, take a step to the left; take
another step forward and repeat
the process; this is Brownian noise.
The amplitude of the noise de-
pends on the length of the step to
the side compared to the length of
the step forward. For Brownian
noise D = 3/2 and from equation 8
A, = C Ay; the amplitude is propor-
tional to the wavelength. Brownian
noise is a good statistical approxi-
mation to topography and bathy-
metry (Bell, 1975).

A global spectral expansion of
topography and bathymetry has
been carried out by Rapp (1989);
his results are given in Figure 6.

It is seen that equation 8 with
D=1.5and A, = 104}, is in good
agreement with the data at all but
the longest wavelengths. The frac-
tal dimension of topography is
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Figure 2. The open circles give the length P
of the west coast of Great Britain as a func-
tion of the length of the measuring rod r
{Mandelbrot, 1967). The solid line is equation
3 with the fractal dimension D = 1.25.
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Figure 3. The number of pieces N of broken
coal larger than a specified size r (Bennett,
1936) obtained by a sieve analysis. The line
is equation 1 with the fractal dimension
D=250

Figure 4. Fractal model for the comminu-
tion of a cube. Two large blocks are placed
diagonally opposite each other at all
scales. There are two blocks with r = h/2
and twelve blocks with r = h/4; thus,
D=Iné6/In2=258.
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Figure 5. The zig-zag lines are four examples of a random walk (Brownian noise). The solid lines
(v = Vx) represent the mean dispersion of the walk.
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Figure 6. Dependence of
amplitude coefficients A,
0.0l . L on the wavelengths A, for
10° 10° 10 10’ Earth’s topography (Rapp,
A, km 1989).
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generally near D = 1.5, but the
amplitude is quite variable, being a
measure of the roughness of the
topography. The front-page pho-
tographs give maps of color-coded
topography and color-coded
roughness of the state of Arizona
(Huang and Turcotte, 1989). The
fractal dimension and roughness
amplitude were obtained for each
4.5 x 4.5 km subregion in the state.
The mean fractal dimension for
linear tracks is D = 1.50 £0.10. The
roughness maps of Arizona clearly
illustrate the erosional terrain asso
ciated with the Grand Canyon in
northwest Arizona and the rough-
ness contrasts between the basins
(smooth) and ranges (rough) in
southwest Arizona. There is very
little variation in the fractal dimen-
sion between different types of
topography; both the Grand
Canyon and the Idaho batholith
have fractal dimensions near 1.5.

What are Fractals

Good for?

Another question I am often
asked is “What are fractals good
for?” The short answer is that they
provide a means of quantifying
scale-invariant processes. Because
geology is filled with scale-invari-
ant processes, there are many
applications, some of which have
been described above. But the
answer is broader than this. In par-
allel with the concept of fractals,
the concept of chaos has evolved
in the past decade. Chaos and frac-
tals are intimately connected; solu-
tions that exhibit chaotic behavior
invariably satisfy fractal statistics
(Devaney, 1988).

Fractals can be useful strictly
on an empirical basis. Power-law
(fractal) statistics have been
applied to a variety of geological
problems; examples include
petroleum and ore reserves. If the

underlying physical and chemical
processes are scale invariant, then
the fractal distribution must be
applicable.

Self-affine fractals are also
applicable to a variety of problems
on an empirical basis. Consider the
problem of making a bathymetric
chart when depths are known
accurately along ship tracks. The
bathymetry for a region can be
expanded in a Fourier series in two
directions. It is necessary to deter-
mine the amplitudes and phases
for each harmonic. However, from
the discussion given above, it is
generally reasonable to assume that
the amplitudes obey the fractal dis-
tribution given in equation 8. The
data along the ship tracks are then
used to specify the phases. The
result is far more accurate than a
brute-force fit or the results
obtained by interpolation.

Hewett (1986) has used this
technique to obtain the three-
dimensional porosity structure of
an oil field. Fractal statistics were
used to interpolate between the
porosity data for the existing wells.
Remarkably realistic geologic struc-
tures were obtained; their accuracy
was subsequently verified in a sec-
ondary recovery test.

Although empirical applica-
tions can be useful, fractals are
often the result of chaotic processes.
The definition of chaos is that two
solutions with slightly different
initial conditions diverge exponen-
tially as they evolve. It is generally
accepted that fluid turbulence is an
example of deterministic chaos;
the equations are well known and
are relatively simple, but turbu-
lence is complex and must be
treated statistically. Since atmo-
spheric flows are turbulent,
weather and climate are examples
of deterministic chaos.

There is also accumulating evi-
dence that the tectonic deforma-
tion of Earth’s crust is an example

of deterministic chaos. The strike-
slip behavior of blocks pulled along
a surface is a simple analog to
earthquakes. Huang and Turcotte
(1990) showed that an asymmetri-
cal pair of sliding blocks exhibits
classical chaotic behavior. Carlson
and Langer (1989) showed that a
large number of identical sliding
blocks behave chaotically. Simple
cellular automata models (Bak and
Tang, 1989; Kadanoff et al., 1989)
produce fractal statistics of failure
resembling earthquakes and indi-
cate that the crust may be in a state
of “self-organized criticality.”

Drainage patterns and topogra-
phy are classic examples of fractals.
Thus the equations governing ero-
sion must be nonlinear. Linear
equations such as the diffusion
equation for erosion (Culling,
1960) cannot generate fractals.
Newman and Turcotte (1990) have
proposed a model for erosion
resembling models for turbulence.
This nonlinear model produces
and maintains self-similar fractal
topography.

If you have read this far you
may be interested in learning
more about fractals. The book by
Mandelbrot (1982) is relatively easy
reading and gives a very personal-
ized view of fractal concepts, but it
is not particularly useful in terms
of applications. Probably the best
overall treatment of fractals at an
intermediate level is the book by
Falconer (1990). The volume of
Pure and Applied Geophysics edited
by Mandelbrot and Scholz (1989)
presents a variety of applications of
fractals to problems in geology and
geophysics; further applications
will appear in a book edited by C. C.
Barton and P. R. LaPointe.
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